首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用INDO系列方法对C28H3Cl, C28H2Cl2, C28HCl3, CH3Cl, CH2Cl2, CHCl3进行了几何构型优化, C28H3Cl, C28HCl3, CH3Cl, CH3Cl为C3v对称性,C28H2Cl2, CH2Cl2为C2v对称性, 这六个分子的基态都是稳定闭壳层分子, 以此构型为基础计算了上述分子的电子光谱, C28H4-nCln(n=1~3)的电子光谱属于理论预测性质。  相似文献   

2.
The energetics of the stationary points of the gas-phase reactions CH(3)X+F(-)-->CH(3)F+X(-) (X=F, Cl, CN, OH, SH, NH(2) and PH(2)) have been definitively computed using focal point analyses. These analyses entailed extrapolation to the one-particle limit for the Hartree-Fock and MP2 energies using basis sets of up to aug-cc-pV5Z quality, inclusion of higher-order electron correlation [CCSD and CCSD(T)] with basis sets of aug-cc-pVTZ quality, and addition of auxiliary terms for core correlation and scalar relativistic effects. The final net activation barriers for the forward reactions are: E (b/F,F)=-0.8, E (b/F, Cl)=-12.2, E (b/F,OH)=+13.6, E b/F,OH=+16.1, E b/F,SH=+2.8, Eb/F, NH=+32.8, and E b/F,PH =+19.7 kcal x mol(-1). For the reverse reactions E b/F,F= -0.8, Eb/Cl,F =+18.3, E b/CN,F=+12.2, E b/OH,F =-1.8, E b/SH,F =+13.2, E b/NH(2),=-1.5, and E b/PH(2) =+9.6 kcal x mol(-1). The change in energetics between the CCSD(T)/aug-cc-pVTZ reference prediction and the final extrapolated focal point value is generally 0.5-1.0 kcal mol(-1). The inclusion of a tight d function in the basis sets for second-row atoms, that is, utilizing the aug-cc-pV(X+d)Z series, appears to change the relative energies by only 0.2 kcal x mol(-1). Additionally, several decomposition schemes have been utilized to partition the ion-molecule complexation energies, namely the Morokuma-Kitaura (MK), reduced variational space (RVS), and symmetry adapted perturbation theory (SAPT) techniques. The reactant complexes fall into two groups, mostly electrostatic complexes (FCH(3).F(-) and ClCH(3).F(-)), and those with substantial covalent character (NCCH(3).F(-), CH(3)OH.F(-), CH(3)SH.F(-), CH(3)NH(2).F(-) and CH(3)PH(2).F(-)). All of the product complexes are of the form FCH(3).X(-) and are primarily electrostatic.  相似文献   

3.
The rate constant for the reaction of the cyanato radical, NCO(X2Pi), with the methyl radical, CH3(X2A2' '), has been measured to be (2.1 +/- 1.3(-0.80)) x 10(-10) cm3 molecule(-1) s(-1), where the uncertainty includes both random and systematic errors at the 68% confidence level. The measurements were conducted over a pressure range of 2.8-4.3 Torr of CH4 and at a temperature of 293 +/- 2 K. The radicals were generated by the 248-nm photolysis of ClNCO in a large excess of CH4. The subsequent rapid reaction, Cl + CH4, generated the CH3 radical. The rate constant for the Cl + CH4 reaction was measured to be (9.2 +/- 0.2) x 10(-14) cm3 molecule(-1) s(-1), where the uncertainty is the scatter of one standard deviation in the data. The progress of the reaction was followed by time-resolved infrared absorption spectroscopy on single rovibrational transitions from the ground vibrational level. Multiple species were detected in these experiments, including NCO, CH3, HCl, C2H6, HCN, HNC, NH, and HNCO. Temporal concentration profiles of the observed species were simulated using a kinetic model, and rate constants were determined by minimizing the sum of the squares of the residuals between experimental observations and model calculations. Both HCN and HNC seem to be minor products (<0.3% each) of the NCO + CH3 reaction. The peak concentrations of NH and HNCO were small, accounting for <1% of the initial NCO concentration; however, their temporal profiles could not be fit by the model kinetics. The observed C2H6 temporal profile always peaked at significantly higher concentrations than the model predictions, and several reaction models were constructed to help explain these observations. The most likely product channel seems to be the recombination channels, producing CH3NCO and CH3OCN.  相似文献   

4.
The recombination rate constants for the reactions NH2(X2B1) + NH2(X2B1) + M → N2H4 + M and NH2(X2B1) + H + M → NH3 + M, where M was CH4, C2H6, CO2, CF4, or SF6, were measured in the same experiment over presseure ranges of 1-20 and 7-20 Torr, respectively, at 296 ± 2 K. The NH2 radical was produced by the 193 nm laser photolysis of NH3. Both NH2 and NH3 were monitored simultaneously following the photolysis laser pulse. High-resolution time-resolved absorption spectroscopy was used to monitor the temporal dependence of both species: NH2 on the (1)2(21) ← (1)3(31) rotational transition of the (0,7,0)A2A1 ← (0,0,0)X2B1 electronic transition near 675 nm and NH3 in the IR on either of the inversion doublets of the qQ3(3) rotational transition of the ν1 fundamental near 2999 nm. The NH2 self-recombination clearly exhibited falloff behavior for the third-body collision partners used in this work. The pressure dependences of the NH2 self-recombination rate constants were fit using Troe’s parametrization scheme, k(inf), k(0), and F(cent), with k(inf) = 7.9 × 10(-11) cm3 molecule(-1) s(-1), the theoretical value calculated by Klippenstein et al. (J. Phys. Chem. A113, 113, 10241). The individual Troe parameters were CH4, k(0)(CH4) = 9.4 × 10(-29) and F(cent)(CH4) = 0.61; C2H6, k(0)(C2H6) = 1.5 × 10(-28) and F(cent)(C2H6) = 0.80; CO2, k(0)(CO2) = 8.6 × 10(-29) and F(cent)(CO2) = 0.66; CF4, k(0)(CF4) = 1.1 × 10(-28) and F(cent)(CF4) = 0.55; and SF6, k(0)(SF6) = 1.9 × 10(-28) and F(cent)(SF6) = 0.52, where the units of k0 are cm6 molecule(-2) s(-1). The NH2 + H + M reaction rate constant was assumed to be in the three-body pressure regime, and the association rate constants were CH4, (6.0 ± 1.8) × 10(-30); C2H6, (1.1 ± 0.41) × 10(-29); CO2, (6.5 ± 1.8) × 10(-30); CF4, (8.3 ± 1.7) × 10(-30); and SF6, (1.4 ± 0.30) × 10(-29), with units cm6 molecule(-1) s,(-1) and the systematic and experimental errors are given at the 2σ confidence level.  相似文献   

5.
Jene PG  Ibers JA 《Inorganic chemistry》2000,39(25):5796-5802
The compounds Co(OC2OPor).CH2Cl2 (1), Co(OC2OPor)(NO)out.0.46CHCl3 (2), Co(OC3OPor).CHCl3 (3), and Co(OC3OPor)(MeIm).3C7H8 (4) (OC2OPor = 5,10,15,20-(benzene-1,2,4,5- tetrakis(2-phenyloxy)ethoxy)-2',2",2"',2"-tetraylporphyrinato dianion; OC3OPor = 5,10,15,20-(benzene-1,2,4,5-tetrakis(2- phenyloxy)propoxy)-2',2",2"',2"-tetraylporphyrinato dianion; MeIm = 1-methylimidazole), have been synthesized, and their structures have been determined by single-crystal X-ray diffraction methods at T = -120 degrees C: 1, a = 8.824(1) A, b = 16.674(1) A, c = 16.836(1) A, alpha = 104.453(1) degrees, beta = 92.752(1) degrees, gamma = 90.983(1) degrees, P1, Z = 2; 2, a = 9.019(1) A, b = 16.588(2) A, c = 16.909(2) A, alpha = 103.923(2) degrees, beta = 92.082(2) degrees, gamma = 93.583(2) degrees, P1, Z = 2; 3, a = 13.484(3) A, b = 14.404(3) A, c = 14.570(3) A, alpha = 105.508(3) degrees, beta = 100.678(3) degrees, gamma = 93.509(4) degrees, P1, Z = 2; 4, a = 16.490(1) A, b = 22.324(2) A, c = 17.257(1) A, b = 92.437(1) degrees, P2(1)/n, Z = 4. These compounds are the first structurally characterized Co-bound members of the OCnOPor ligand system. The NO ligand in 2 and the MeIm ligand in 4 bind asymmetrically and lead to several metrical changes in these porphyrins, e.g., variations in average porphyrin deviations and Co atom displacements relative to the porphyrinato N atoms and the mean porphyrin planes.  相似文献   

6.
Density functional theory calculations have been used to investigate the structure and bonding of the d(3)d(3) bioctahedral complexes X(3)V(mu-S(CH(3))(2))(3)VX(3)(2)(-) (X = F(-), Cl(-), OH(-), SH(-), NH(2)(-)). According to geometry optimizations using the broken-symmetry approach and the VWN+B-LYP combination of density functionals, the halide-terminated complexes have a V-V bond order of approximately 2, while complexes featuring OH(-), SH(-), or NH(2)(-) as terminal ligands exhibit full triple bonding between the vanadium atoms. The tendency toward triple bonding in the latter complexes is consistent with an increased covalency of the vanadium-ligand bonds, and the influence of bond covalency is apparent also in the tendency for V-V bond elongation in the complexes with OH(-) and NH(2)(-) terminal ligands. Detailed examination of the composition of molecular orbitals in all of the thioether-bridged V(II) complexes substantiates the conclusion that the strong antiferromagnetic coupling which we have determined for these complexes (-J > 250 cm(-)(1)) is due to direct bonding between metal atoms rather than superexchange through the bridging ligands. As such, these V(II) complexes comprise the first apparent examples of multiple metal-metal bonding in first-transition-row, face-shared dinuclear complexes and are therefore of considerable structural and synthetic interest.  相似文献   

7.
We report results of two-color resonant four-wave mixing experiments on highly predissociated levels of the methylthio (or thiomethoxy) radical CH3S in its first excited electronic state A 2A1. Following photolysis of jet-cooled dimethyl disulfide at 248 nm, the spectra were measured with a hole-burning scheme in which the probe laser excited specific rotational transitions in band 3(3). The spectral simplification afforded by the two-color method allows accurate determination of line positions and homogeneous linewidths, which are reported for the C-S stretching states 3v(v=3-7) and combination states 1(1)3v(v=0-2), 2(1)3v(v=3-6), and 1(1)2(1)3v(v=0,1) involving the symmetric CH3 stretching (nu1) mode and the CH3 umbrella (nu2) mode. The spectra show pronounced mode specificity, as the homogeneous linewidth of levels with similar energies varies up to two orders of magnitude; nu3 is clearly a promoting mode for dissociation. Derived vibrational wave numbers omega1', omega2', and omega3' of the A state agree satisfactorily with ab initio predictions.  相似文献   

8.
Song HH  Zheng LM  Wang Z  Yan CH  Xin XQ 《Inorganic chemistry》2001,40(19):5024-5029
Four new zinc diphosphonate compounds with formulas [NH(3)(CH(2))(2)NH(3)]Zn(hedpH(2))(2).2H(2)O, 1, [NH(3)(CH(2))(n)()NH(3)]Zn(2)(hedpH)(2).2H(2)O, (n = 4, 2; n = 5, 3; n = 6, 4) (hedp = 1-hydroxyethylidenediphosphonate) have been synthesized under hydrothermal conditions at 110 degrees C and in the presence of alkylenediamines NH(2)(CH(2))(n)()NH(2) (n = 2, 4, 5, 6). Crystallographic data for 1: monoclinic, space group C2/c, a = 24.7422(15), b = 5.2889(2), c = 16.0338(2) A, beta = 117.903(1) degrees, V = 1856.17(18) A(3), Z = 4; 2: monoclinic, space group P2(1)/n, a = 5.4970(3), b = 12.1041(6), c = 16.2814(12) A, beta = 98.619(5) degrees, V = 1071.07(11) A(3), Z = 2; 3: monoclinic, space group P2(1)/n, a = 5.5251(2), b = 12.5968(3), c = 16.1705(5) A, beta = 99.182(1) degrees, V = 1111.02(6) A(3), Z = 2; 4: triclinic, space group P-1, a = 5.4785(2), b = 14.1940(5), c = 16.0682(6) A, alpha = 81.982(2) degrees, beta = 89.435(2) degrees, gamma = 79.679(2) degrees, V = 1217.11(8) A(3), Z = 2. In compound 1, two of the phosphonate oxygens are protonated. The metal ions are bridged by the hedpH(2)(2-) groups through three of the remaining four phosphonate oxygens, forming a one-dimensional infinite chain. The protonated ethylenediamines locate between the chains in the lattice. In compounds 2-4, only one phosphonate oxygen is protonated. Compounds 2 and 3 have a similar three-dimensional open-network structure composed of [Zn(2)(hedpH)(2)](n) double chains with strong hydrogen bonding interactions between them, thus generating channels along the [100] direction. The protonated diamines and water molecules reside in the channels. Compound 4 contains two types of [Zn(2)(hedpH)(2)](n) double chains which are held together by strong hydrogen bonds, forming a two-dimensional network. The interlayer spaces are occupied by the [NH(3)(CH(2))(6)NH(3)](2+) cations and water molecules. The significant difference between structures 2-4 is also featured by the coordination geometries of the zinc atoms. The geometries of those in 2 can be described as distorted octahedral, and those in 3 as distorted square pyramidal. In 4, two independent zinc atoms are found, each with a distorted octahedral and a tetrahedral geometry, respectively.  相似文献   

9.
By the use of [1H,15N] heteronuclear single quantum coherence (HSQC) 2D NMR spectroscopy and electrochemical methods we have determined the hydrolysis profile of the bifunctional dinuclear platinum complex [[trans-PtCl(15NH3)2]2(mu-15NH2(CH2)(6)15NH2)]2+ (1,1/t,t (n = 6), 15N-1), the prototype of a novel class of potential antitumor complexes. Reported are estimates for the rate and equilibrium constants for the first and second aquation steps, together with the acid dissociation constant (pKa1 approximately pKa2 approximately pKa3). The equilibrium constants determined by NMR at 25 and 37 degrees C (I = 0.1 M) were similar, pK1 approximately pK2 = 3.9 +/- 0.2, and from a chloride release experiment at 37 degrees C the values were found to be pK1 = 4.11 +/- 0.05 and pK2 = 4.2 +/- 0.5. The forward and reverse rate constants for aquation determined from this chloride release experiment were k1 = (8.5 +/- 0.3) x 10(-5) s-1 and k-1 = 0.91 +/- 0.06 M-1 s-1, where the model assumed that all the liberated chloride came from 1. When the second aquation step was also taken into account, the rate constants were k1 = (7.9 +/- 0.2) x 10(-5) s-1, k-1 = 1.18 +/- 0.06 M-1 s-1, k2 = (10.6 +/- 3.0) x 10(-4) s-1, k-2 = 1.5 +/- 0.6 M-1 s-1. The rate constants compare favorably with other complexes with the [PtCl(am(m)ine)3]+ moiety and indicate that the equilibrium of all these species favors the chloro form. A pKa value of 5.62 was determined for the diaquated species [[trans-Pt(15NH3)2(H2O)]2(mu-15NH2(CH2)(6)15NH2)]4+ (3) using [1H,15N] HSQC NMR spectroscopy. The speciation profile of 1 and its hydrolysis products under physiological conditions is explored.  相似文献   

10.
The synthesis and characterization of the novel systems [Zn(2)(H(2)N(CH(2))(2)NH(2))(5)][(Zn(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(H(2)O)].9H(2)O (1), [Cd(2)(H(2)N(CH(2))(2)NH(2))(5)][(Cd(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(Br)].9H(2)O (2), and [Zn(2)(H(2)N(CH(2))(2)NH(2))(5)][(Zn(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(Cl)].9H(2)O (3) have been described. These materials represent a new class of solids that have been prepared by combining conventional coordination compounds with spherical polyoxovanadate clusters. The isomorphous structures of these hybrid solids consist of two-dimensional arrays of container cluster molecules [V(18)O(42)(X)] (X = H(2)O, Br-, Cl-) interlinked by the transition metal complex moieties [M(H(2)N(CH(2))(2)NH(2))(2)] (M = Zn, Cd). These compounds contain an unprecedented complex cation, [M(2)(H(2)N(CH(2))(2)NH(2))(5)](4+). Crystal data for 1: C(9)H(46)N(9)O(26)V(9)Zn(2), monoclinic space group P2(1)/m (No. 11), a = 12.3723(7) A, b = 20.9837(11) A, c = 15.8379(8) A, beta = 97.3320(10) degrees, Z = 4.  相似文献   

11.
A series of novel platinum(II)-2,2':6',2' '-terpyridine (trpy) complexes containing (thioalkyl)dicarba-closo-dodecaborane(12) (closo-carborane) derivatives were prepared by treatment of the labile precursor species [Pt(MeCN)(trpy)](OTf)2 with R(CH2)nSH (R = closo-1,2-carborane, n = 0-3; R = closo-1,7-carborane, n = 1; R = closo-1,12-carborane, n = 1) in the presence of NEt3 to afford brightly colored complexes of the type [PtS(CH2)nR(trpy)]OTf. All products were characterized by means of multinuclear (1H, 13C, 11B, and 195Pt) 1D- and 2D-NMR spectroscopy, ESI-MS, and, for the 1,7-carborane derivative, X-ray crystallography. Preliminary in vitro cytotoxicity studies of selected complexes against human ovarian carcinoma cells are also reported.  相似文献   

12.
The aquation profiles of two novel dinuclear polyamine-linked, platinum-based antitumour complexes [{trans-PtCl((15)NH(3))(2)}(2){μ-((15)NH(2)(CH(2))(6)(15)NH(2)(CH(2))(6)(15)NH(2))}](3+) (BBR3007, 1,1/t,t-6,6, 1) and [{trans-PtCl((15)NH(3))(2)}(2){μ-((15)NH(2)(CH(2))(6)(15)NH(2)(CH(2))(2)(15)NH(2)(CH(2))(6)(15)NH(2))}](4+) (BBR3610, 1,1/t,t-6,2,6, 1') have been probed using 2D [(1)H, (15)N] HSQC NMR spectroscopy. Reported herein are the rate constants for the hydrolysis of 1 and 1', as well as the acid dissociation constants of the coordinated aqua ligands in their aquated derivatives. The aquation and anation rate constants for the single step aquation model in 15 mM NaClO(4) (pH 5.4) at 298 K are, for 1, k(1) = 7.2 ± 0.1 ×10(-5) s(-1), k(-1) = 0.096 ± 0.002 M(-1) s(-1) and, for 1', k(1) = 4.0 ± 0.2 × 10(-5) s(-1), k(-1) = 1.4 ± 0.1 M(-1) s(-1). The effect of the linker backbone (Pt(tetra(m)mine vs. polyamine) was evaluated by comparison with previous data for the trinuclear complex [{trans-PtCl(NH(3))(2)}(2)(μ-trans-Pt(NH(3))(2){NH(2)(CH(2))(6)NH(2)}(2))](4+) (1,0,1/t,t,t or BBR3464). The pK(1) for 1,0,1/t,t,t (3.44) is closest to that of 1 (3.12), while the pronounced difference for 1' (4.54), means that 1' is the least aquated of the three complexes at equilibrium. pK(a) values of 5.92 were calculated for the aquated forms of both 1 and 1', which are 0.3 pK units higher than for either 1,0,1/t,t,t, or the dinuclear 1,1/t,t. The higher pK(a) values for both polyamine-linked compounds may be attributed to the formation of macrochelates between the central NH(2) groups and the {PtN(3)O} coordination sphere of the aquated species.  相似文献   

13.
We report the first rotationally resolved spectroscopic studies on PH3+(X2A2") using zero kinetic energy photoelectron spectroscopy and coherent VUV radiation. The spectra about 8000 cm(-1) above the ground vibrational state of PH3+(X2A2") have been recorded. We observed the vibrational energy level splittings of PH3+(X2A2") due to the tunneling effect in the inversion (symmetric bending) vibration (nu2+). The energy splitting for the first inversion vibrational state (0+/0-) is 5.8 cm(-1). The inversion vibrational energy levels, rotational constants, and adiabatic ionization energies (IEs) for nu2+ = 0-16 have been determined. The bond angles between the neighboring P-H bonds and the P-H bond lengths are also obtained using the experimentally determined rotational constants. With the increasing of the inversion vibrational excitations (nu2+), the bond lengths (P-H) increase a little and the bond angles (H-P-H) decrease a lot. The inversion vibrational energy levels have also been calculated by using one dimensional potential model and the results are in good agreement with the experimental data for the first several vibrational levels. In addition to inversion vibration, we also observed firstly the other two vibrational modes: the symmetric P-H stretching vibration (nu1+) and the degenerate bending vibration (nu4+). The fundamental frequencies for nu1+ and nu4+ are 2461.6 (+/-2) and 1043.9 (+/-2) cm(-1), respectively. The first IE for PH3 was determined as 79670.9 (+/-1) cm(-1).  相似文献   

14.
We report a dynamics study of the reaction N((2)D) + H(2) (v=0, j=0-5) --> NH + H using the time-dependent quantum wave packet method and a recently reported single-sheeted double many-body expansion potential energy surface for NH(2)(1(2)A' ') which has been modeled from accurate ab initio multireference configuration-interaction calculations. The calculated probabilities for (v=0, j=0-5) are shown to display resonance structures, a feature also visible to some extent in the calculated total cross sections for (v=0, j=0). A comparison between the calculated centrifugal-sudden and coupled-channel reaction probabilities validate the former approximation for the title system. Rate constants calculated using a uniform J-shifting scheme and averaged over a Boltzmann distribution of rotational states are shown to be in good agreement with the available experimental values. Comparisons with other theoretical results are also made.  相似文献   

15.
The hydrolysis profile of the bifunctional trinuclear phase II clinical agent [(trans-PtCl(NH(3))(2))(2)(mu-trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)NH(2))(2))](4+) (BBR3464, 1) has been examined using [(1)H,(15)N] heteronuclear single quantum coherence (HSQC) 2D NMR spectroscopy. Reported are estimates of the rate and equilibrium constants for the first and second aquation steps, together with the acid dissociation constant (pK(a1) approximately equal to pK(a2) approximately equal to pK(a3)). The equilibrium constants for the aquation determined by NMR at 298 and 310 K (I = 0.1 M, pH 5.3) are similar, pK(1) = pK(2) = 3.35 +/- 0.04 and 3.42 +/- 0.04, respectively. At lower ionic strength (I = 0.015 M, pH 5.3) the values at 288, 293, and 298 K are pK(1) = pK(2) = 3.63 +/- 0.05. This indicates that the equilibrium is not strongly ionic strength or temperature dependent. The aquation and anation rate constants for the two-step aquation model at 298 K in 0.1 M NaClO(4) (pH 5.3) are k(1) = (7.1 +/- 0.2) x 10(-5) s(-1), k(-1) = 0.158 +/- 0.013 M(-1) s(-1), k(2) = (7.1 +/- 1.5) x 10(-5) s(-1), and k(-2) = 0.16 +/- 0.05 M(-1) s(-1). The rate constants in both directions increase 2-fold with an increase in temperature of 5 K, and rate constants increase with a decrease in solution ionic strength. A pK(a) value of 5.62 plus minus 0.04 was determined for the diaqua species [(trans-Pt(NH(3))(2)(OH(2)))(2)(mu-trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)-NH(2))(2))](6+) (3). The speciation profile of 1 under physiological conditions is explored and suggests that the dichloro form predominates. The aquation of 1 in 15 mM phosphate was also examined. No slowing of the initial aquation was observed, but reversible reaction between aquated species and phosphate does occur.  相似文献   

16.
In this work, the X2B1 and A2A1 electronic states of the phosphino (PH2) free radical have been studied by dispersed fluorescence and ab initio methods. PH2 molecules were produced in a molecular free-jet apparatus by laser vaporizing a silicon rod in the presence of phosphine (PH3) gas diluted in helium. The laser-induced fluorescence, from the excited A2A1 electronic state down to the ground electronic state, was dispersed and analyzed. Ten (upsilon1upsilon2upsilon3) vibrationally excited levels of the ground electronic state, with upsilon1 < or = 2, upsilon2 < or = 6, and upsilon3 = 0, have been observed. Ab initio potential-energy surfaces for the X2B1 and A2A1 electronic states have been calculated at 210 points. These two states correlate with a 2Pi(u) state at linearity and they interact by the Renner-Teller coupling and spin-orbit coupling. Using the ab initio potential-energy surfaces with our RENNER computer program system, the vibronic structure and relative intensities of the A2A1 --> X2B1 emission band system have been calculated in order to corroborate the experimental assignments.  相似文献   

17.
New ethylenediphosphonates of molybdenum, A[Mo2O5(O3PCH2CH2PO3)] (A = NH4 (1), Tl (2), Cs (3), Rb (4)), and K(H3O)[Mo2O5(O3PCH2CH2PO3)] (5), have been synthesized by a hydrothermal method and structurally characterized by X-ray diffraction, spectroscopic, and thermal studies. These compounds consist of pillared anionic layers [Mo2O5(O3PCH2CH2PO3)]2-, with A+, K+, and H3O+ ions in the interlayer region as well as in the cavities within the anionic layers. Single-crystal X-ray structures of compounds 1 and 5 have been determined. They crystallize in the orthorhombic space group Cmca with Z = 8 and have the following unit cell parameters. For 1, a = 25.60(1), b = 10.016(4), and c = 9.635(3) angstroms and for 5, a = 25.63(1), b = 10.007(2), and c = 9.512(1) angstroms.  相似文献   

18.
The reaction of 2 equiv of the air-stable primary phosphine (ferrocenylmethyl)phosphine (PH2CH2Fc, 1) with [Pd(cod)Cl2] (Fc = ferrocenyl; cod = 1,5-cyclooctadiene) at 298 K gave the phosphanido-bridged Pd(II) tetramer [Pd(PH2CH2Fc)Cl(mu-PHCH2Fc)]4 (2), which shows an unprecedented arrangement of four Pd atoms embedded in an eight-membered Pd4P4 ring. An X-ray diffraction study showed that 2 crystallizes in the triclinic space group P with a = 17.607(7) A, b = 17.944(7) A, c = 18.792(7) A, alpha = 107.120(12) degrees, beta = 96.344(13) degrees, gamma = 117.087(15) degrees . Each molecule contains four palladium atoms in a distorted square-planar coordination formed by one chlorine and three phosphorus atoms. Two of the latter belong to bridging primary phosphanides and the remaining one is contributed by a terminal PH2CH2Fc ligand. The coordination environments of neighboring metal centers adopt an almost perpendicular mutual orientation. The reaction of 2 equiv of 1 with [Pt(cod)Cl2] at 323 K yielded the analogous Pt(II) tetramer of formula [Pt(PH2CH2Fc)Cl(mu-PHCH2Fc)]4 (3), which was fully characterized by multinuclear and dynamic NMR, IR, and elemental analyses. Single-crystal X-ray diffraction on 3 confirmed the tetranuclear arrangement in the solid state, but orientational disorder of the molecule precludes a more detailed discussion of the structure. Low-temperature NMR experiments in CD2Cl2 showed the presence of two slowly interconnecting conformers. Reaction of 1 and [M(cod)Cl2] (M = Pd or Pt) at lower temperatures (273 K for Pd, 295 K for Pt) in dichloromethane allowed the detection in solution of the mononuclear species cis-[M(PH2CH2Fc)2Cl2] (M = Pd, 4; M = Pt, 5) which, upon heating, transformed into the tetramers 2 and 3, respectively. Solid samples of 4 and 5 could be isolated after workup at low temperature and were characterized by conventional spectroscopic methods.  相似文献   

19.
The weak metal-metal interactions of Pt(II)-Ag(I)/Cu(I) have been investigated by ab initio method at MP2 level through the model complexes [trans-Pt(PH3)2(CN)2-M(PH3)2+] (M=Ag,Cu). The calculated interaction energy of 12.9 and 11.5 kcal mol(-1) for [trans-Pt(PH3)2(CN)2-Ag(PH3)2+] and [trans-Pt(PH3)2(CN)2-Cu(PH3)2+] respectively, are in the middle of the van der Waals force and the strong hydrogen bond. The estimated equilibrium separations between Pt and M, r(eq)(Pt-M) (3.32 A for M=Ag and 3.23 A for M=Cu), lie within the region expected for weak metal-metal interaction. The electronic dispersive contributions dominate the weak interaction.  相似文献   

20.
高义德  冉琴  陈旸  陈从香 《化学学报》2002,60(2):256-260
对CCl4/Ar混合气体直流脉冲放电产生CCl2自由基,再分别用波长为550.56nm,541.52nm,532.25nm,524.31nm,523.82nm和523.27nm的激光将电子基态CCl2激励到激发态A^1B1的(0,3,0),(0,4,0),(1,3,0),(0,6,0),(1,4,0),(2,2,0)振动态,激发态CCl2(A^1B1)的不同振动态的时间分辨荧光信号显示该信号呈双指数衰减,测得室温下CCl2(A^1B1)不同振动态被NH3,H2O,CH2Br2,NH(CH3)2,NH(C2H5)2,N(C2H5)3,n-C6H14等分子猝灭的实验结果,用三能级模型分析处理实验数据,获得态分辨速率常数kA和ka值,并对实验结果进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号