首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A two-degree-of-freedom model of iced, electrical quad bundle conductor is developed to comprehensively describe the different galloping behaviors observed. By applying centre manifold and invertible linear transformation, the co-dimension-2 bifurcation is analyzed. The relationships of parameters between this system and the original system are obtained to analyze and to control the galloping of the quad iced bundle conductor. The space trajectory, Lyapunov exponent and Lyapunov dimension are investigated via numerical simulation to present a rigorous proof of existence of chaos.  相似文献   

2.
We investigate the Hopf bifurcations of the recently proposed smooth-and-discontinuous (SD) oscillator which exhibits both smooth and discontinuous dynamics depending on the value of a parameter a. The nonlinearity presented in this system characterizes irrationality and piecewise linearity for smooth and discontinuous cases, respectively, which could not meet the requirements of the conventional methods due to the barrier of Taylor expansion. Introducing a series of new kinds of elliptic integrals of the first and second kind to the perturbed oscillator, we obtain the Poincare-Birchoff normal forms of Hopf bifurcations for both smooth and discontinuous regimes. We also demonstrate the criteria for the occurrence of Hopf bifurcations, the stability of periodic solutions bifurcating from the equilibria and the excellent agreement between the theoretical and numerical results.  相似文献   

3.
Chevron patterns and defect lattices are unique patterns found in the electrohydrodynamic convection of nematic liquid crystals. We study numerically the stability and bifurcations of the chevron patterns and the limit-cycle oscillation of defect lattices using a two-dimensional anisotropic model equation. Simplified one dimensional models are derived by truncating Fourier modes from the two-dimensional model to qualitatively understand the chevron patterns and the defect lattices. The pattern formation and the dynamical behaviors in the one-dimensional models are compared with the numerical simulations of the two-dimensional model.  相似文献   

4.
We systematicaily investigate the behaviour of pattern formation in a reaction-diffusion system when the system is located near the Turing-Hopf codimension-2 point in phase space. The chloride-iodide-malonic acid (CIMA) reaction is used in this study. A phase diagram is obtained using the concentration of polyvinyl alcohol (PVA ) and malonic acid (MA) as control parameters. It is found that the Turing-Hopf mixed state appears only in a small vicinity near the codimension-2 point, and has the form of hexagonal pattern overlapped with anti-target wave; the boundary line separating the Taring state and the wave state is independent of the concentration of MA, only relies on the concentration of PVA. The corresponding numerical simulation using the Lengyel-Epstein (LE) model gives a similar phase diagram as the experiment; it reproduces most patterns observed in the experiment. However, the mixed state we obtain in simulation only appears in the anti-wave tip area, implying that the 3-D effect in the experiments may change the pattern forming behaviour in the codimension-2 regime.  相似文献   

5.
N drops, pinned by circular contact lines, are arranged in an array and coupled by a network of conduits. Inertialess exchange of volume among drops is driven by capillarity through the minimization of total surface energy. Drops scavenge volume from one another based on pressure differences, proportional to the surface tension, and arising from curvature differences. The system coarsens in the sense that, with time, volume is increasingly localized and ends up in a single ‘winner’ drop. Numerical simulations show that the identity of the winner can depend discontinuously on the initial condition and connectivity network. This motivates a study of the corresponding N-dimensional nonlinear dynamical system. All fixed points and their linear stabilities, obtained analytically, are found to be independent of connectivity. To determine which of the stable fixed points will be the winner, manifolds separating the attracting regions are found using a method which combines local information (eigenvectors at fixed points) with global information (invariant manifolds due to symmetry). This method is demonstrated for three N=3 systems with various connectivity networks, and is used to explain the numerical observations.  相似文献   

6.
P.M. Jordan 《Physics letters. A》2008,372(42):6363-6367
Burgers' equation with time delay is considered. Using the Cole-Hopf transformation, the exact solution of this nonlinear partial differential equation (PDE) is determined in the context of a (seemingly) well-posed initial-boundary value problem (IBVP) involving homogeneous Dirichlet data. The solution obtained, however, is shown to exhibit a delay-induced instability, suffering blow-up in finite-time.  相似文献   

7.
A novel chaotic oscillator in wavelength domain by using a tunable fibre laser is proposed. The generator of chaos in wavelength is composed of fibre Bragg grating (FBG) with hybrid delayed feedback loop which induces wavelength nonlinearity. The dynamical regime of wavelength is ruled by a differential difference equation. We give the numerical simulation of the experimental setup and discuss its application in an optical encryption system.  相似文献   

8.
We investigate bifurcations in neuronal networks with a hub structure. It is known that hubs play a leading role in characterizing the network dynamical behavior. However, the dynamics of hubs or star-coupled systems is not well understood. Here, we study rather subnetworks with a star-like configuration. This coupled system is an important motif in complex networks. Thus, our study is a basic step for understanding structure formation in large networks. We use the Morris-Lecar neuron with class I and class II excitabilities as a node. Homogeneous (coupling the same class neurons) and heterogeneous (coupling different class neurons) cases are considered for both excitatory and inhibitory coupling. For the homogeneous system class II neurons are suitable for achieving both complete and cluster synchronization in excitatory and inhibitory coupling, respectively. For the heterogeneous system with inhibitory coupling, the class I hub neuron has a wider parameter region of synchronous firings than the class II hub. Moreover, the class I hub neuron with the excitatory synapse gives rise to bifurcations of synchronized states and multi-stability (coexistence of a few different states) is observed.  相似文献   

9.
The soliton calculation method put forward by Zabusky and Kruskal has played an important role in the development of soliton theory, however numerous numerical results show that even though the parameters satisfy the linear stability condition, nonlinear instability will also occur. We notice an exception in the numerical calculation of soliton, gain the linear stability condition of the second order Leap-frog scheme constructed by Zabusky and Kruskal, and then draw the perturbed equation with the finite difference method. Also, we solve the symmetry group of the KdV equation with the knowledge of the invariance of Lie symmetry group and then discuss whether the perturbed equation and the conservation law keep the corresponding symmetry. The conservation law of KdV equation satisfies the scaling transformation, while the perturbed equation does not satisfy the Galilean invariance condition and the scaling invariance condition. It is demonstrated that the numerical simulation destroy some physical characteristics of the original KdV equation. The nonlinear instability in the calculation of solitons is related to the breaking of symmetry.  相似文献   

10.
Stratified and rotating fluids support obliquely propagating internal waves. A symmetry-breaking shape of the fluid domain focuses them on a wave attractor. For a trapezoidal basin, it is here shown how to determine the internal wave field analytically. This requires solving the wave equation on a closed domain-an ill-posed Cauchy problem-whose solution exhibits a remarkable self-similar spatial structure. These results are relevant for mixing and mean flow generation in oceans, atmospheres and stars whose symmetry is generally broken and where internal waves are tidally forced.  相似文献   

11.
王宁 《中国物理快报》2004,21(12):2327-2329
We present a new symmetry flow of the Kadomtsev-Petviashvili (KP) hierarchy, which origins from the rescaling of whole “multi-time“ valuables. This flow describes the deformation of solutions of the KP hierarchy with respect to a noncommutative parameter. It is shown that the introduced rescaling symmetry flow does not commute with the ordinary evolution flows of the KP hierarchy, but commutes with the evolution flows with respect to slow-variables.  相似文献   

12.
We study pulse propagation in a normal-dispersion optical fibre amplifier with an arbitrary longitudinal gain profile by self-similarity techniques. We show the functional form of the development of low-amplitude wings on the parabolic pulse, which are associated with the evolution of an arbitrary input pulse to the asymptotic parabolic pulse solution. It is found that for the increasing gain the amplifier output corresponding to the input Gaussian pulse converges to the asymptotic parabolic pulse solution more quickly than the output obtained with the input hyperbolic secant pulse, whereas for the decreasing gain the input pulse profiles have nearly no effect on the speed of convergence to the parabolic pulse solution. These theoretical results are confirmed by numerical simulations.  相似文献   

13.
A pair of coupled classical oscillators with a general potential and general form of coupling is investigated. For general potentials, the single-frequency solution is shown to be stable for small excitations. For special potentials, such system remains stable for an arbitrary excitation. In both cases, the stability does not depend on the form of coupling. Transition to the instability regime follows from the way how nonlinear potential entrains the energy transfer between the oscillators. Relation between the existence of multi-frequency quasi-periodic or periodic solutions and the instability of single-frequency ones is discussed.  相似文献   

14.
梅凤翔  尚玫 《中国物理快报》2008,25(11):3837-3839
We study an application of the Jacobi last multiplier to a generalized Hamilton system. A partial differential equation on the last multiplier of the system is established. The last multiplier can be found by the equation. If the quantity of integrals of the system is sufficient, the solution of the system can be found by the last multiplier.  相似文献   

15.
A one-pool model with Ca^2+-activated inositol-trisphosphate-concentration degradation is considered. For complex bursting Ca^2+ oscillation, point-cycle bursting of subHopf-subHopf type is found to be in the intermediate state from quasi-periodic bursting to point-point bursting of subHopf-subHopf type. The fast-slow burster analysis is used to study the transition mechanisms among simple periodic oscillation, quasi-periodic bursting, point-point and point-cycle burstings. The dynamics analysis of different oscillations provides better insight into the generation and transition mechanisms of complex intra- and inter-cellular Ca^2+ signalling.  相似文献   

16.
Recent experiments using single-molecule techniques have characterized the mechanical properties of single kinesin molecules in vitro at a range of loads and ATP concentrations. These experiments have shown that kinesin moves processively along microtubules by alternately advancing each of its motor domains in a hand-over-hand fashion, using Brownian motion and the energy from ATP hydrolysis. We have extended the theoretical analysis of kinesin through a mechanistic model that is capable of describing transient and steady-state behavior. Transient dynamics are needed to describe the effect of external perturbations (e.g. interactions with other kinesin molecules). Quantitative metrics are tailored to characterize the synchronization of nonlinear, nonsmooth systems such as kinesin. These metrics are employed to analyze the simulation results and to quantify the effect of the cargo linker stiffness, the load, and the difference in intrinsic velocity on the synchronization of two coupled motor proteins. Herein, the mechanistic model and the new analysis techniques are demonstrated for the case of two coupled kinesin motors.  相似文献   

17.
18.
A mathematical model proposed by Grubelnk et al. [Biophys. Chem. 94 (2001) 59] is employed to study the physiological role of mitochondria and the cytosolic proteins in generating complex Ca^2+ oscillations, lntracellulax bursting calcium oscillations of point-point, point-cycle and two-folded limit cycle types are observed and explanations are given based on the fast/slow dynamical analysis, especially for point-cycle and two-folded limit cycle types, which have not been reported before. Furthermore, synchronization of coupled bursters of Ca^2+ oscillations via gap junctions and the effect of bursting types on synchronization of coupled cells are studied. It is argued that bursting oscillations of point-point type may be superior to achieve synchronization than that of point cycle type.  相似文献   

19.
The transition process from steady convection to chaos is experimentally studied in thermocapillary convections of floating half zone. The onset of temperature oscillations in the liquid bridge of floating half zone and further transitions of the temporal convective behaviour are detected by measuring the temperature in the liquid bridge. The fast Fourier transform reveals the frequency and amplitude characteristics of the flow transition. The experimental results indicate the existence of a sequence of period-doubling bifurcations that culminate in chaos. The measured Feigenbaum numbers are δ2 =4.69 and δ4 = 4.6, which are comparable with the theoretical asymptotic value δ=4.669.  相似文献   

20.
Two-photon Degenerate four-wave mixing (DFWM) has been used for the detection of ammonia in a cell and in an atmospheric pressure flame. The NH3 molecules were excited from the ground state X to either the C' or the B state and the DFWM signal was recorded simultaneously with the laser-induced fluorescence signal, originating from the C-A and B-A transitions, respectively. During the flame experiments sequential measurements of NH3 and OH in an NH3/O2 flame were also performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号