首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aerosol optical tweezers coupled with Raman spectroscopy can allow the detailed investigation of aerosol dynamics. We describe here measurements of the evolving size, composition, and phase of single aqueous aerosol droplets containing the surfactant sodium dodecyl sulfate and the inorganic salt sodium chloride. Not only can the evolving wet particle size be probed with nanometer accuracy, but we show that the transition to a metastable microgel particle can be followed, demonstrating that optical tweezers can be used to manipulate both spherical and non-spherical aerosol particles. Further, through the simultaneous manipulation and characterization of two aerosol droplets of different composition in two parallel optical traps, the phase behavior of a surfactant-doped particle and a surfactant-free droplet can be compared directly in situ. We also illustrate that the manipulation of two microgel particles can allow studies of the coagulation and interaction of two solid particles. Finally, we demonstrate that such parallel measurements can permit highly accurate comparative measurements of the evolving wet particle size of a surfactant-doped droplet with a surfactant-free droplet.  相似文献   

2.
The ability of two techniques, aerosol cavity ring down spectroscopy (A-CRDS) and optical tweezers, to retrieve the refractive index of atmospherically relevant aerosol was compared through analysis of supersaturated sodium nitrate at a range of relative humidities. Accumulation mode particles in the diameter range 300-600 nm were probed using A-CRDS, with optical tweezer measurements performed on coarse mode particles several micrometers in diameter. A correction for doubly charged particles was applied in the A-CRDS measurements. Both techniques were found to retrieve refractive indices in good agreement with previously published results from Tang and Munkelwitz, with a precision of ±0.0012 for the optical tweezers and ±0.02 for the A-CRDS technique. The coarse mode optical tweezer measurements agreed most closely with refractive index predictions made using a mass-weighted linear mixing rule. The uncertainty in the refractive index retrieved by the A-CRDS technique prevented discrimination between predictions using both mass-weighted and volume-weighted linear mixing rules. No efflorescence or kinetic limitations on water transport between the particle and the gas phase were observed at relative humidities down to 14%. The magnitude of the uncertainty in refractive index retrieved using the A-CRDS technique reflects the challenges in determining particle optical properties in the accumulation mode, where the extinction efficiency varies steeply with particle size.  相似文献   

3.
High-sensitivity optical absorption measurements on individual sub-picoliter aqueous droplets are reported using aerosol optical tweezers to simultaneously manipulate and characterize a sample droplet and a control droplet for comparison. It is demonstrated that the detection sensitivity to trace analytes is set by the weak absorption by the solvent, water, and that absorbances less than 5 x 10(-7) can be measured over pathlengths of less than 10 microm. The potential applications of this approach to analyze aerosol particle composition and to perform trace analysis are discussed.  相似文献   

4.
Aerosol optical tweezers are used to probe the phase, morphology, and hygroscopicity of single aerosol particles consisting of an inorganic component, sodium chloride, and a water insoluble organic component, oleic acid. Coagulation of oleic acid aerosol with an optically trapped aqueous sodium chloride droplet leads to formation of a phase-separated particle with two partially engulfed liquid phases. The dependence of the phase and morphology of the trapped particle with variation in relative humidity (RH) is investigated by cavity enhanced Raman spectroscopy over the RH range <5% to >95%. The efflorescence and deliquescence behavior of the inorganic component is shown to be unaffected by the presence of the organic phase. Whereas efflorescence occurs promptly (<1 s), the deliquescence process requires both dissolution of the inorganic component and the adoption of an equilibrium morphology for the resulting two phase particle, occurring on a time-scale of <20 s. Comparative measurements of the hygroscopicity of mixed aqueous sodium chloride/oleic acid droplets with undoped aqueous sodium chloride droplets show that the oleic acid does not impact on the equilibration partitioning of water between the inorganic component and the gas phase or the time response of evaporation/condensation. The oxidative aging of the particles through reaction with ozone is shown to increase the hygroscopicity of the organic component.  相似文献   

5.
We study the electrostatic and hydrodynamic interactions of colloidal particles in nonpolar solvents. Using blinking optical tweezers, we can extract the screening length, kappa-1, the effective surface potential, |ezeta*|, and the hydrodynamic radius, ah, in a single measurement. We apply this technique to suspensions of polystyrene and poly(methyl methacrylate) particles in hexadecane with soluble charge control agents, aerosol sodium di-2-ethylhexylsulfosuccinate (AOT) and polyisobutylene succinimide (OLOA-1200). We find that the electrostatic interactions of these particles depend sensitively on surface composition as well as on the concentration and chemistry of the charge control agent.  相似文献   

6.
We demonstrate that optical tweezers can be used to control and characterize the coagulation and mixing state of aerosols. Liquid aerosol droplets of 2-14 mum in diameter are optically trapped and characterized by spontaneous and stimulated Raman scatterings, which together provide a unique signature of droplet size and composition. From the conventional bright field image, the size of the trapped droplet can be estimated and compared with that determined from stimulated Raman scattering, and the motion of the particle within the trapping plane can be recorded. A maximum of four droplets can be manipulated in tandem by forming multiple optical traps through rapid beam steering. The coagulation of two droplets can be studied directly by controlling two droplets. The limiting conditions under which optical forces and capillary forces dominate the aerosol coagulation event are explored by varying the relative optical trap strengths and characterizing the coagulation of different droplet sizes. Finally, we demonstrate that the coagulation of different aerosol components can be compared and the mixing state of the final coagulated droplet can be investigated. In particular, we compare the outcome of the coagulation of an aqueous sodium chloride aerosol droplet with a second aqueous droplet, with an ethanol droplet or with a decane droplet.  相似文献   

7.
We report a method to selectively label phosphorylated, membrane proteins with microscopic particles. This technology is particularly useful in single particle studies. In such studies, the particles may serve to visualize protein diffusion and/or as 'handles' to study the force of interaction between the labeled protein and the membrane matrix. In the latter kind of experiments, forces can be applied and measured by calibrated optical tweezers. Optical tweezers were used in this work to test the strength of the particle labeling. Labeling a single protein with a particle produces a long-lived, distinct tag and is particularly useful for proteins in photosynthetic membranes, which contain endogenous fluorophores that would render single fluorescent proteins difficult to detect.  相似文献   

8.
The complex interplay of processes that govern the size, composition, phase and morphology of aerosol particles in the atmosphere is challenging to understand and model. Measurements on single aerosol particles (2 to 100 μm in diameter) held in electrodynamic, optical and acoustic traps or deposited on a surface can allow the individual processes to be studied in isolation under controlled laboratory conditions. In particular, measurements can now be made of particle size with unprecedented accuracy (sub-nanometre) and over a wide range of timescales (spanning from milliseconds to many days). The physical state of a particle can be unambiguously identified and its composition and phase can be resolved with a high degree of spatial resolution. In this review, we describe the advances made in our understanding of aerosol properties and processes from measurements made of phase behaviour, hygroscopic growth, morphology, vapour pressure and the kinetics of water transport for single particles. We also show that studies of the oxidative aging of single particles, although limited in number, can allow the interplay of these properties to be investigated. We conclude by considering the contributions that single particle measurements can continue to make to our understanding of the properties and processes occurring in atmospheric aerosol.  相似文献   

9.
Collisions of a particle pair induced by optical tweezers have been employed to study colloidal stability. In order to deepen insights regarding the collision-sticking dynamics of a particle pair in the optical trap that were observed in experimental approaches at the particle level, the authors carry out a Brownian dynamics simulation. In the simulation, various contributing factors, including the Derjaguin-Landau-Verwey-Overbeek interaction of particles, hydrodynamic interactions, optical trapping forces on the two particles, and the Brownian motion, were all taken into account. The simulation reproduces the tendencies of the accumulated sticking probability during the trapping duration for the trapped particle pair described in our previous study and provides an explanation for why the two entangled particles in the trap experience two different statuses.  相似文献   

10.
We demonstrate that the coagulation of two aerosol droplets of different chemical composition can be studied directly through the unique combination of optical tweezers and Raman spectroscopy. Multiple optical traps can be established, allowing the manipulation of multiple aerosol droplets. Spontaneous Raman scattering allows the characterization of droplet composition and mixing state, permitting the phase segregation of immiscible components in multiphase aerosol to be investigated with spatial resolution. Stimulated Raman scattering allows the integrity of the droplet and uniformity of refractive index to be probed. The combination of these spectroscopic probes with optical tweezers is shown to yield unprecedented detail in studies of the coagulation of decane and water droplets.  相似文献   

11.
We demonstrate a method for generating flow within a microfluidic channel using an optically driven pump. The pump consists of two counter rotating birefringent vaterite particles trapped within a microfluidic channel and driven using optical tweezers. The transfer of spin angular momentum from a circularly polarised laser beam rotates the particles at up to 10 Hz. We show that the pump is able to displace fluid in microchannels, with flow rates of up to 200 microm(3) s(-1) (200 fL s(-1)). The direction of fluid pumping can be reversed by altering the sense of the rotation of the vaterite beads. We also incorporate a novel optical sensing method, based upon an additional probe particle, trapped within separate optical tweezers, enabling us to map the magnitude and direction of fluid flow within the channel. The techniques described in the paper have potential to be extended to drive an integrated lab-on-chip device, where pumping, flow measurement and optical sensing could all be achieved by structuring a single laser beam.  相似文献   

12.
Micrometer-sized polystyrene particles form two-dimensional crystals in alternating current (ac) electric fields. The induced dipole-dipole interaction is the dominant force that drives this assembly. We report measurements of forces between colloidal particles in ac electric fields using optical tweezers and find good agreement with the point dipole model. The magnitude of the pair interaction forces depends strongly on the bulk solution conductivity and decreases as the ionic strength increases. The forces also decrease with increasing field frequency. The salt and frequency dependences are consistent with double layer polarization with a characteristic relaxation frequency omega(CD) approximately a(2)/D, where a is the particle radius and D is the ion diffusivity. This enables us to reinterpret the order-disorder transition reported for micrometer-sized polystyrene particles [Lumsdon et al., Langmuir 20, 2108 (2004)], including the dependence on particle size, frequency, and ionic strength. These results provide a rational framework for identifying assembly conditions of colloidal particles in ac fields over a wide range of parameters.  相似文献   

13.
We present a manipulation and characterization system for single airborne particles which is integrated onto a microscope slide. Trapped particles are manipulated by means of radiation pressure and characterized by cavity enhanced Raman spectroscopy. Optical fibers are used to deliver the trapping laser light as well as to collect the Raman scattered light, allowing for a flexible usage of the device. The system features a sample chamber which is separated from an aerosol-flooded injection chamber by means of a light guiding glass-capillary. The coupling of this device with an aerosol optical tweezers setup to selectively load its trapping sites is demonstrated. Finally, a route towards chip-integrated handling and processing of multiple particles is shown and the first results are presented.  相似文献   

14.
Holographic optical tweezers are used to make comparative measurements of the hygroscopic properties of single component aqueous aerosol containing sodium chloride and ammonium sulfate over a range of relative humidity from 84% to 96%. The change in RH over the course of the experiment is monitored precisely using a sodium chloride probe droplet with accuracy better than ±0.09%. The measurements are used to assess the accuracy of thermodynamic treatments of the relationship between water activity and solute mass fraction with particular attention focused on the dilute solute limit approaching saturation vapor pressure. The consistency of the frequently used Clegg-Brimblecombe-Wexler (CBW) treatment for predicting the hygroscopic properties of sodium chloride and ammonium sulfate aerosol is confirmed. Measurements of the equilibrium size of ammonium sulfate aerosol are found to agree with predictions to within an uncertainty of ±0.2%. Given the accuracy of treating equilibrium composition, the inconsistencies highlighted in recent calibration measurements of critical supersaturations of sodium chloride and ammonium sulfate aerosol cannot be attributed to uncertainties associated with the thermodynamic predictions and must have an alternative origin. It is concluded that the CBW treatment can allow the critical supersaturation to be estimated for sodium chloride and ammonium sulfate aerosol with an accuracy of better than ±0.002% in RH. This corresponds to an uncertainty of ≤1% in the critical supersaturation for typical supersaturations of 0.2% and above. This supports the view that these systems can be used to accurately calibrate instruments that measure cloud condensation nuclei concentrations at selected supersaturations. These measurements represent the first study in which the equilibrium properties of two particles of chemically distinct composition have been compared simultaneously and directly alongside each other in the same environment.  相似文献   

15.
Optical tweezers were developed in 1970 by Arthur Ashkin as a tool for the manipulation of micron-sized particles. Ashkin's original design was then adapted for a variety of purposes, such as trapping and manipulation of biological materials[1] and the laser cooling of atoms.[2,3] More recent development has led to nano-optical tweezers, for trapping particles on the scale of only a few nanometers, and holographic tweezers, which allow for dynamic control of multiple traps in real-time. These alternatives to conventional optical tweezers have made it possible to trap single molecules and to perform a variety of studies on them. Presented here is a review of recent developments in nano-optical tweezers and their current and future applications.  相似文献   

16.
Since Professor Matijevité and his colleagues published pioneering work on aerosol chemical reactions, based on experiments with monodisperse aerosol generators and laminar flow reactors, there has been considerable progress in the chemical characterization of aerosol particles and the study of their chemical reactions. This paper surveys recent developments and new research on the application of Raman spectroscopy to gas/liquid and gas/solid aerosol reactions. Of particular interest are applications of the vibrating orifice aerosol generator and electrodynamic and optical levitators coupled to Raman spectrometers to explore aerosol chemistry. The systems examined include the production of polymeric microsphcrcs, the generation of metal oxide particles from alkoxide droplets, SQ2/sorbent particle reactions used for demilitarization of stick gases, chemical characterization of particle arrays, and reactions following collisions of dissimilar particles. The complications associated with the interpretation of Raman data introduced by morphology-dependent resonances in the elastically scattered light are also examined.  相似文献   

17.
In this perspectives article, we reflect upon the existence of chirality in atmospheric aerosol particles. We then show that organic particles collected at a field site in the central Amazon Basin under pristine background conditions during the wet and dry seasons consist of chiral secondary organic material. We show how the chiral response from the aerosol particles can be imaged directly without the need for sample dissolution, solvent extraction, or sample preconcentration. By comparing the chiral-response images with optical images, we show that chiral responses always originate from particles on the filter, but not all aerosol particles produce chiral signals. The intensity of the chiral signal produced by the size resolved particles strongly indicates the presence of chiral secondary organic material in the particle. Finally, we discuss the implications of our findings on chiral atmospheric aerosol particles in terms of climate-related properties and source apportionment.  相似文献   

18.
We study the transition of ordered structures to disordered bands and vortices in colloidal suspensions subjected to AC electric fields. We map the critical frequencies and field biases at which particles form disordered bands and vortices. These results are interpreted based on the trajectory dynamics of particle pairs using blinking optical tweezers. Under conditions that vortices are observed, individual particle pairs rotate out of alignment with the field. The direction and magnitude of these interactions determine the orientation and average angular velocity of the band revolution. Increasing the frequency of the electric field reduces the anomalous rotation of the particles pairs, consistent with the frequency dependence of the suspension order-to-disorder transition. This anomalous rotation is consistent with a torque on doublets generated by the mutual polarization of particles and phase lag of the induced dipoles.  相似文献   

19.
Laser-induced breakdown spectroscopy of particles ejected by optical catapulting is discussed for the first time. For this purpose, materials deposited on a substrate were ejected and transported from the surface in the form of a solid aerosol by optical catapulting using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser at 1064 nm. A Q-switched Nd:YAG laser at 532 nm was used for chemical characterization of the particles by laser-induced breakdown spectroscopy. Both lasers were synchronized in order to perform suitable spectral detection. The optical catapulting was optimized and evaluated using aluminum silicate particles, nickel spheres, and quartz and stainless steel particles. Experimental parameters such as the interpulse delay time, the sampling distance, the laser fluence, the sampling rate and the particle size have been studied. A correlation between these parameters and the particle size is reported and discussed.  相似文献   

20.
The influence of sample properties and composition on the size and concentration of aerosol particles generated by nanosecond Nd:YAG laser ablation at 213 nm was investigated for three sets of different materials, each containing five specimens with a similar matrix (Co-cemented carbides with a variable content of W and Co, steel samples with minor differences in elemental content and silica glasses with various colors). The concentration of ablated particles (particle number concentration, PNC) was measured in two size ranges (10–250 nm and 0.25–17 µm) using an optical aerosol spectrometer. The shapes and volumes of the ablation craters were obtained by Scanning Electron Microscopy (SEM) and by an optical profilometer, respectively. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号