首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Classical molecular dynamics simulations have been used to explore the phase diagrams for a family of attractive-repulsive soft-core Gay-Berne models [R. Berardi, C. Zannoni, J. S. Lintuvuori, and M. R. Wilson, J. Chem. Phys. 131, 174107 (2009)] and determine the effect of particle softness, i.e., of a moderately repulsive short-range interaction, on the order parameters and phase behaviour of model systems of uniaxial and biaxial ellipsoidal particles. We have found that isotropic, uniaxial, and biaxial nematic and smectic phases are obtained for the model. Extensive calculations of the nematic region of the phase diagram show that endowing mesogenic particles with such soft repulsive interactions affect the stability range of the nematic phases, and in the case of phase biaxiality it also shifts it to lower temperatures. For colloidal particles, stabilised by surface functionalisation, (e.g., with polymer chains), we suggest that it should be possible to tune liquid crystal behaviour to increase the range of stability of uniaxial and biaxial phases (by varying solvent quality). We calculate second virial coefficients and show that they are a useful means of characterising the change in effective softness for such systems. For thermotropic liquid crystals, the introduction of softness in the interactions between mesogens with overall biaxial shape (e.g., through appropriate conformational flexibility) could provide a pathway for the actual chemical synthesis of stable room-temperature biaxial nematics.  相似文献   

2.
The contemporary state of studying mineral liquid crystals has been analyzed. Such crystals are lyotropic aqueous or water–organic colloidal solutions, the dispersed phases of which are represented by nano- and microsized crystalline particles. The methods of production, structure, and physicochemical properties of these systems, as well as the influence of electric and magnetic fields on them, have been discussed in detail.  相似文献   

3.
We have investigated the microstructure and phase behavior of monoglyceride-based lyotropic liquid crystals in the presence of hydrophilic silica colloidal particles of size comparable to or slightly exceeding the repeat units of the different liquid crystalline phases. Using small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC), we compare the structural properties of the neat mesophases with those of the systems containing silica colloidal particles. It is found that the colloidal particles always macrophase separate in inverse bicontinuous cubic phases of gyroid (Ia3d) and double diamond (Pn3m) symmetries. SAXS data for the inverse columnar hexagonal phase (H(II)) and lamellar phase (L(α)) suggest that a low volume fraction of the nanoparticles can be accommodated within the mesophases, but that at concentrations above a given threshold, the particles do macrophase separate also in these systems. The behavior is interpreted in terms of the enthalpic and entropic interactions of the nanoparticles with the lamellar and hexagonal phases, and we propose that, in the low concentration limit, the nanoparticles are acting as point defects within the mesophases and, upon further increase in concentration, initiate nucleation of nanoparticles clusters, leading to a macroscopic phase separation.  相似文献   

4.
In this article, the search for the elusive biaxial nematic phase (NB) in liquid crystals is considered. The structure of the phase is described along with theoretical and computational work which suggests how it might be realised. An overview of the work of the Exeter group in this area is then given showing the different approaches adopted and illustrating how one of these has led to a new type of amphiphilicity based on shape.  相似文献   

5.
孟庆伟  谌东中 《化学通报》2005,68(9):667-673
从液晶基元连接方式、液晶分子拓扑结构以及凝聚态自组织方式等方面扼要介绍和评述了非传统型液晶分子设计与工程研究进展,并重点介绍了可望引起液晶显示技术革命的双轴向列相香蕉形液晶研究的突破性工作,展望了非传统型液晶分子设计和复杂自组织超分子液晶领域今后的发展方向。  相似文献   

6.
We present a mean-field theory to describe phase separations in mixtures of a nematic liquid crystal and a colloidal particle. The theory takes into account an orientational ordering of liquid crystals and a crystalline ordering of colloidal particles. We calculate phase diagrams on the temperature-concentration plane, depending on interactions between a liquid crystal and a colloidal surface and a coupling between nematic and crystalline ordering. We find various phase separation processes, such as a nematic-crystal phase separation and nematic-isotropic-crystal triple point. Inside binodal curves, we find new unstable and metastable regions which are important in phase ordering dynamics. We also find a stable nematic-crystalline (NC) phase, where colloidal particles dispersed in a nematic phase can form a crystalline structure. The coexistence between two NC phases with different concentrations can be appear though the coupling between nematic and crystalline ordering.  相似文献   

7.
Dora Izzo 《Liquid crystals》2016,43(9):1230-1236
We use the Landau theory of phase transitions to obtain the global phase diagram concerning the uniaxial nematic, biaxial nematic, uniaxial smectic-A and biaxial smectic-A phases. The transition between the biaxial nematic and biaxial smectic is continuous as well as the transition between the nematic phases and the transition between the smectic phases. The transition from uniaxial nematic and uniaxial smectic is continuous with a tricritical point. The tricritical point may be absent and the entire transition becomes continuous. The four phases meet at a tetracritical point.  相似文献   

8.
Computer modeling and simulations are performed to investigate capillary bridges spontaneously formed between closely packed colloidal particles in phase separating liquids. The simulations reveal a self-stabilization mechanism that operates through diffusive equilibrium of two-phase liquid morphologies. Such mechanism renders desired microstructural stability and uniformity to the capillary bridges that are spontaneously formed during liquid solution phase separation. This self-stabilization behavior is in contrast to conventional coarsening processes during phase separation. The volume fraction limit of the separated liquid phases as well as the adhesion strength and thermodynamic stability of the capillary bridges are discussed. Capillary bridge formations in various compact colloid assemblies are considered. The study sheds light on a promising route to in situ (in-liquid) firming of fragile colloidal crystals and other compact colloidal microstructures via capillary bridges.  相似文献   

9.
In this study the influence of polycarboxylate-based polyelectrolytes on the particle interaction among tricalcium silicate (C(3)S, main clinker phase), calcium silicate hydrates (CSH), and calcium aluminate sulfate hydrates (ettringite) (main hydration phases) has been examined. These phases are the constituents of major concern during early hydration of cement suspensions. The results of zeta potential measurements on single mineral phase experiments show that the phases C(3)S and CSH are positively charged in synthetic pore solution (liquid phase of hydrating cement suspension), whereas the ettringite is negatively charged. Due to these opposite charges, ettringite crystals should coagulate with CSH phases and/or deposit on surfaces of the much larger C(3)S clinker particles. This behavior was proven by cryo-microscopic analysis of high-pressure frozen cement suspensions, which illustrates the consequences of colloidal mechanisms on the microstructure of early cement suspensions. Furthermore, it is shown that the polyelectrolytes have a much higher adsorption affinity to ettringite surfaces (hydrate phase) compared to silicate surfaces. However, the results from rheology experiments reveal that the presence of polyelectrolytes has a strong impact on the suspension properties of all investigated mineral phases by decreasing yield stress and plastic viscosity. From the results it can be concluded that the ettringite is the dominant mineral phase in terms of the state of dispersion which includes particle-particle and particle-polyelectrolyte interaction in the bulk cement system.  相似文献   

10.
New phases and colloidal assemblies have recently been observed in liquid crystalline solvents. The long-range-ordering and the topological constraints of the solvents allow controlled organization of the particles. In addition, liquid crystals have been doped with the aim of achieving new physical properties in potentially useful composite materials. © 1999 Elsevier Science Ltd.  相似文献   

11.
The so-called “sol-gel” process offers new approaches to the synthesis of transition metal oxides. Based on inorganic polymerization from molecular precursors, it leads to highly condensed species or colloids. These colloids are actually two-phase systems in which small oxide particles are dispersed in a liquid medium. A very large interface separates both phases and interfacial phenomena, at the oxide-water interface, lead to new features in the physics and chemistry of transition metal oxides. Ordered aggregation of oxide particles may occur, giving rise to colloidal crystals or anisotropic tactoids in which the mean distance between particles can be of about 0, 1 μm. This distance can be decreased leading to ordered solid aggregates. Transition metal oxide gels exhibit the physical properties of both phases, i.e., electronic properties arising from electron hopping through the mixed valence oxide network and ionic properties arising from proton diffusion through the liquid phase. Electronic and ionic properties appear to be strongly related through the very large interface. Large coatings can be easily deposited from colloidal solutions and transition metal oxide gels should be very useful for making microionic devices.  相似文献   

12.
The tetrahedral bending angle in V-shaped nematogens was claimed to be the optimum for finding a biaxial nematic liquid crystal phase. The benzo[1,2-b:4,3-b’]dithiophene core, recently successfully applied as a tetrahedral bending unit in mesogens with lateral flexible chains, is here embedded in a scaffold with only terminal chains, which conventionally promotes the formation of nematic phases at low temperature. A series of new mesogens has been successfully prepared, realising hockey-stick, hockey-stick dimer and V-shaped molecular topologies. Only the hockey-stick mesogens assemble in uniaxial nematic phases over a broad temperature range. Single crystal structure analysis of a hockey-stick and V-shaped compound reveal remarkable similarities with the benzodithiophene core wrapped by aliphatic chains. A model explaining the absence of nematic mesophases in the family of V-shaped, shape-persistent mesogens with terminal aliphatic chains is presented and results in the proposal of a new design for biaxial nematogens.  相似文献   

13.
An intermediate nematic phase is proposed for the interpretation of recent experimental results on phase biaxiality in bent-core nematic liquid crystals. The phase is macroscopically uniaxial but has microscopic biaxial, and possibly polar, domains. Under the action of an electric field, the phase acquires macroscopic biaxial ordering resulting from the collective alignment of the domains. A phenomenological theory is developed for the molecular order in this phase and for its transitions to purely uniaxial and to spontaneously biaxial nematic phases.  相似文献   

14.
Two disc-shaped multialkynyl arene ethers (1 and 2) with unusual thermo-mesomorphic properties are presented. Conoscopic studies show that the nematic phases of these new low molecular weight liquid crystals are biaxial and that the sign of their biaxiality is negative. The diether 2 is the first discotic twin liquid crystal which exhibits a nematic phase.  相似文献   

15.
The method of density matching between the solid and liquid phases is often adopted to effectively eliminate the effect of sedimentation of suspensions on dynamic behavior of a colloidal system. Experiments on crystallization of charged colloidal microspheres with di-ameter of 98 nm dispersed in density-matched and -unmatched media (mixtures of H2O and D2O in proper proportion) are compared to examine the influence of sedimentation. Reflection spectra of colloidal suspensions were used to monitor the crystallization process. Results showed that the crystal size of the density-unmatched (namely, in the presence of sedimentation) sample grew faster than that of the density-matched (in the absence of sedi-mentation) case at the initial stage of the crystallization, and then the latter overtook and outstripped the former. To explain these observations, we assume that in the settling of crystals sedimentation facilitates result in more particles getting into the crystal structures. However, as the crystals increase to varying sizes, the settling velocities become large and hydrodynamic friction strips off some particles from the delicate crystal structures. Overall, the sedimentation appears to accelerate the crystal size growth initially and then retard the growth. In addition, the crystal structures formed under microgravity were more closely packed than that in normal gravity.  相似文献   

16.
目前发现的液晶多数为有机液晶,无机液晶非常少见。非球形无机胶体(棒状或盘状)体系在排斥体积熵的作用下可形成液晶相,即无机溶致液晶。由于其具有的理论意义和潜在的应用价值,无机液晶近年来引起了人们的关注。本文综述了无机溶致液晶的研究历史和最新进展。  相似文献   

17.
Crystallization behavior of soft, attractive microgels   总被引:2,自引:0,他引:2  
The equilibrium phase behavior and the dynamics of colloidal assemblies composed of soft, spherical, colloidal particles with attractive pair potentials have been studied by digital video microscopy. The particles were synthesized by precipitation copolymerization of N-isopropylacrylamide (NIPAm), acrylic acid (AAc), and N,N'-methylene bis(acrylamide) (BIS), yielding highly water swollen hydrogel microparticles (microgels) with temperature- and pH-tunable swelling properties. It is observed that in a pH = 3.0 buffer with an ionic strength of 10 mM, assemblies of pNIPAm-AAc microgels crystallize due to a delicate balance between weak attractive and soft repulsive forces. The attractive interactions are further confirmed by measurements of the crystal melting temperatures. As the temperature of colloidal crystals is increased, the crystalline phase does not melt until the temperature is far above the lower critical solution temperature (LCST) of the microgels, in stark contrast to what is typically observed for phases formed due to purely repulsive interactions. The unusual thermal stability of pNIPAm-AAc colloidal crystals demonstrates an enthalpic origin of crystallization for these microgels.  相似文献   

18.
ABSTRACT

In this short review we summarise already published results to manifest very important role of high order elastic terms in the formation of colloidal structures in nematic liquid crystals (NLC). We reveal that every colloidal particle in nematics can be effectively represented as a triad of nonzero elastic moments. Usually colloidal particles in NLCs are treated with their elastic dipole and/or quadrupole moments only. But we demonstrate that octupole, hexadecapole and even 64-pole moments play an important role as well and determine parameters of different 1D, 2D and even 3D colloidal crystals in NLCs. In general the triad of the first three nonzero elastic moments can describe almost all colloidal structures observed so far. Dipole particles should be considered as hard spheroids with a triad of the dipole, quadrupole and octupole moments. Quadrupole particles should be treated as hard spheres with a triad of quadrupole, hexadecapole and 64-pole elastic moments

PACS numbers: 61.30.Dk, 82.70.Dd, 64.70.M?  相似文献   

19.
Biaxial nematic phases have been the subject of a long list of studies. In particular, they were found for a few lyotropic micellar solutions. There is a debate in the literature on whether the micellar aggregates should be biaxial, or if biaxiality could be the result of perpendicular alignment of uniaxial particles of cylinder-like and disc-like geometry in a mixture. Based on recent studies on the phase stability of such mixtures, we have investigated a polydisperse distribution of uniaxial particles interacting through a Maier–Saupe potential. Our calculations were developed for a general distribution of micellar anisometries. The distribution was obtained from the fitting of our results to the experimental data of Yu and Saupe’s well-known 1980 paper, near the Landau point, yielding a bimodal distribution, with the presence of two quadrupoles referred to objects of opposite symmetry, that is to prolate and oblate micelles. This result lends support to the rationalization of the biaxial phase for lyotropic systems in terms of a polydisperse mixture of rod-like and disc-like micelles.  相似文献   

20.
The orientation-dependent spin-lattice relaxation rates for biaxial liquid crystal phases are given explicitly in terms of spectral densities JmLm'L (ω) described by Berggren et al. (1993, J. chem. Phys., 99, 6180). It is recognized that the 'biaxial' spectral densities are not observed in biaxial phases unless the director is oriented away from the external magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号