首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase behaviour of the thermotropic cubic mesogen 1,2-bis(4′-n-hexyloxybenzoyl)hydrazine [BABH(6)] was investigated under pressure up to about 55 MPa using a polarising optical microscope equipped with a high-pressure optical cell. BABH(6) shows the crystal (Cr)–cubic (Cub)–isotropic liquid (I) phase transition at ambient pressure on heating. The smectic C (SmC) phase was induced above 32 MPa, showing the unusual phase sequence of Cr–Cub–SmC–I, similar to those in BABH(n) (n = 8–10). The boundary between the Cub and SmC phases exhibited a negative slope dT/dP of about –1.0 ºC MPa?1.  相似文献   

2.
The pressure-scanning differential thermal analyzer (DTA) measurements of the cubic (Cub)-smectic C (SmC) transition of thermotropic cubic mesogens of 1,2-bis-(4-n-octyloxybenzoyl)- and 1,2-bis-(4-n-dodecyloxybenzoyl)hydrazine, BABH(8) and BABH(12), were performed at isothermal condition using a high-pressure differential thermal analyzer. BABH(8) showed the same endothermic peak of the Cub-SmC transition in the pressurizing process as on heating at isobaric condition. On the other hand, BABH(12) showed only the cubic phase between the crystal and the isotropic liquid under pressures up to 16-17 MPa, but a high-pressure smectic C (SmC(hp)) phase was induced instead of the cubic phase under higher pressure. The Cub-SmC(hp) phase transition with a small exothermic peak occurred in the pressurizing process and the transition was observed reversibly. The Cub-SmC(hp) phase transition was in accordance with the morphological and structural observations mentioned before. The strange phenomenon of the inversion of sign of the Cub-SmC transition heat of BABH(n) homologues can be explained by the “Alkyl-chains as entropy reservoir” mechanism proposed by Saito et al.  相似文献   

3.
The phase transition behaviour of an optically isotropic, thermotropic cubic mesogen 1,2-bis-(4-n-octyloxybenzoyl)hydrazine, BABH(8), was investigated under pressures up to 200 MPa using a high pressure differential thermal analyser, wide-angle X-ray diffraction and a polarizing optical microscope equipped with a high pressure optical cell. The phase transition sequence, low temperature crystal (Cr2)-high temperature crystal (Cr 1)- cubic (Cub)-smectic C (SmC)-isotropic liquid (I) observed at atmospheric pressure, is seen in the low pressure region below about 30 MPa. The cubic phase disappears at high pressures above 30–40 MPa, in conjunction with the disappearance of the Cr1 phase. The transition sequence changes to Cr2-SmC-I in the high pressure region. Since only the Cub-SmC transition line among all the phase boundaries has a negative slope (dT/dP) in the temperature-pressure phase diagram, the temperature range for the cubic phase decreases rapidly with increasing pressure. As a result, a triple point was estimated approximately as 31.6 ±2.0 MPa, 147.0±1.0°C for the SmC, Cub and Cr1 phases, indicating the upper limit of pressure for the observation of the cubic phase. Reversible changes in structure and optical texture between the Cub and SmC phases were observed from a spot-like X-ray pattern and dark field for the cubic phase to the Debye-Sherrer pattern and sand-like texture for the SmC phase both in isobaric and isothermal experiments.  相似文献   

4.
The phase transition behaviour of an optically isotropic, thermotropic cubic mesogen 1,2-bis-(4- n -octyloxybenzoyl)hydrazine, BABH(8), was investigated under pressures up to 200 MPa using a high pressure differential thermal analyser, wide-angle X-ray diffraction and a polarizing optical microscope equipped with a high pressure optical cell. The phase transition sequence, low temperature crystal (Cr 2 )-high temperature crystal (Cr 1 ) - cubic (Cub)-smectic C (SmC)-isotropic liquid (I) observed at atmospheric pressure, is seen in the low pressure region below about 30 MPa. The cubic phase disappears at high pressures above 30-40 MPa, in conjunction with the disappearance of the Cr 1 phase. The transition sequence changes to Cr 2 -SmC-I in the high pressure region. Since only the Cub-SmC transition line among all the phase boundaries has a negative slope (d T /d P ) in the temperature-pressure phase diagram, the temperature range for the cubic phase decreases rapidly with increasing pressure. As a result, a triple point was estimated approximately as 31.6 ±2.0 MPa, 147.0 ±1.0°C for the SmC, Cub and Cr 1 phases, indicating the upper limit of pressure for the observation of the cubic phase. Reversible changes in structure and optical texture between the Cub and SmC phases were observed from a spot-like X-ray pattern and dark field for the cubic phase to the Debye-Sherrer pattern and sand-like texture for the SmC phase both in isobaric and isothermal experiments.  相似文献   

5.
The phase behavior of an optically isotropic cubic mesogen 4'-n-hexadecyloxy-3'-nitrobiphenyl-4-carboxylic acid (ANBC-16) was investigated under hydrostatic pressures up to 200 MPa using a high-pressure DTA, a polarizing optical microscope equipped with a high-pressure hot-stage and a wide-angle X-ray diffractometer equipped with a high-pressure vessel. In the T vs. P phase diagram constructed in the heating mode, a triple point exists at 54±1 MPa and 205±1°C for the SmC, cubic, and SmA phases. A new mesophase, denoted here as X, appears in place of the cubic phase under pressures above about 60 MPa, while the X phase appears on cooling in the whole pressure region studied. Thus the X phase is a monotropic (metastable) phase between the SmA and Cub phases in the low pressure region, while being an enantiotropic phase between the SmA and SmC phases in the high pressure range. The X phase exhibits broken-fan or sand-like textures under pressure and a spot-like diffraction pattern, indicating the birefringent feature and no layered structure. It is suggested that the X phase is tetragonal or hexagonal columnar phase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The phase transition behaviour of an optically isotropic, thermotropic cubic mesogen 1,2-bis(4-n-decyloxybenzoyl)hydrazine, BABH(10), was investigated under pressures up to 300 MPa using a high pressure differential thermal analyser, a wide angle X-ray diffractometer and a polarizing optical microscope (POM) equipped with a high pressure optical cell. The reversible change in structure and optical texture between the cubic (Cub) and smectic C (SmC) phases was associated with a change from a spot-like X-ray pattern and dark field for the Cub phase to the Debye-Sherrer ring pattern and sand-like texture for the SmC phase under both isobaric and isothermal conditions. The Cub phase was found to disappear at pressures above about 11 MPa. The phase transition sequence, low temperature crystal (Cr3)-intermediate temperature crystal (Cr2)-high temperature crystal (Cr1)-Cub-SmC-isotropic liquid (I) observed at atmospheric pressure, is maintained in the low pressure region below 10 MPa. The transition sequence changes to Cr3-Cr2-(Cr1)-SmC-I in the high pressure region. Since the Cub-SmC transition line determined by POM has a negative slope (dT/dP) in the T-P phase diagram, a triple point is estimated approximately at 10-11 MPa, and 143-145°C for the SmC, Cub and Cr1 phases, giving the upper limit of pressure for the observation of the cubic phase.  相似文献   

7.
The phase transition behaviour of two optically isotropic, thermotropic cubic mesogens 1,2-bis-(4-n-undecyloxy- and 4-n-dodecyloxy-benzoyl)hydrazine, BABH(11) and BABH(12), was investigated under hydrostatic pressures up to 300 MPa using a high pressure differential thermal analyser, a wide angle X-ray diffractometer and a polarizing optical microscope equipped with a high pressure optical cell. It is found that for BABH(11) and BABH(12), a smectic C (SmC) phase is induced between the isotropic liquid (I) and the cubic (Cub) phases by applying pressures above 10-12 and 16-17 MPa, respectively. A sea-island texture consisting of bright sand-like sea regions (SmC phase) and areas of dark islands (Cub phase) appears in the mesophase under pressures up to 140 MPa, while the sand-like texture of the SmC phase is formed predominantly on cooling under pressure. These observations indicate the destabilization of the cubic phase with increasing pressure. The phase transition sequence of BABH(11) and BABH(12), Cr-Cub-I at atmospheric pressure, changes to Cr-Cub-SmC-I under intermediate pressures and would change to Cr-SmC-I under elevated pressure.  相似文献   

8.
The thermal behaviour of members of a homologous series which exhibits the optically isotropic cubic phase, the 4'- n -alkoxy-3'-nitrobiphenyl-4-carboxylic acids having alkoxy chains containing 16, 20 and 22 carbon atoms (referred to as ANBC-16, -20 and -22, respectively) was investigated under pressures up to 200-400 MPa by high pressure differential thermal analysis. In the phase diagram of ANBC-16 obtained on heating, a triple point was estimated at 54 ±1 MPa and 205 ±1°C for the SmC, Cub and SmA phases. It was found that the X phase is formed on cooling under all pressures, while appearing on heating at high pressures above about 54 MPa. Thus the X phase appears monotropically between the SmA and Cub phases in the low pressure region and enantiotropically between the SmA and SmC phases under higher pressures. It is strongly suggested that the X phase is a columnar mesophase. For ANBC-20 and -22, the cubic phase tends to be destabilized with increasing pressure. The temperature region of the cubic phase of ANBC-20 becomes narrower with increasing pressure and a triple point for the SmC, Cub and I phases is estimated to be at about 309 MPa. On the other hand, the cubic phase of ANBC-22 is still observed at the highest pressure examined.  相似文献   

9.
Two polycatenar materials composed of a four‐aromatic‐ring core with a perfluorinated moiety attached in one terminal position through either butylene‐ or pentylene spacer groups, and three tetradecyloxy chains at the other end (abbreviated as 14PC4F and 14PC5F), were investigated to study the effect of pressure on the phase transition behaviour. A polarizing optical microscope equipped with a high pressure optical hot stage, was used for the purpose. The T vs. P phase diagrams of 14PC4F and 14PC5F were constructed in the pressure region up to 100 MPa. 14PC4F showed the stable crystal (Cr1)–columnar tetragonal (Coltet)–smectic A (SmA)–columnar hexagonal (Colh)–isoropic liquid (I) phase transition sequence under all pressures. 14PC5F exhibited the phase sequence metastable crystal (Cr2)–cubic (Cub)–Coltet–SmA–I in a melt‐cooled sample on heating under pressure. But when the melt‐cooled Cr2 sample was annealed at 52–54°C for 2–3 h, the stable crystal (Cr1) was formed slowly, giving a stable Cr1–Cub–Coltet–SmA–I phase sequence. The temperature region of the stable cubic phase broadened with increasing pressure. Furthermore a new mesophase of 14PC5F was pressure‐induced between the I and SmA phases on cooling at pressures above about 16 MPa. Since the monotropic mesophase exhibited a texture very similar to that of the high temperature Colh phase of 14PC4F with planar orientation, the new phase was assigned at a high temperature columnar hexagonal phase of 14PC5F.  相似文献   

10.
The phase behaviour of 4'-n-hexadecyloxy-3'-nitrobiphenyl-4-carboxylic acid (ANBC-16) was investigated under hydrostatic pressures up to 200 MPa using high pressure differential thermal analysis. The phase transition sequence crystal 4 (Cr4)-crystal 3 (Cr3)-crystal 2 (Cr2)-crystal 1 (Cr1)-smectic C (SmC)-Cubic (Cub)-smectic A (SmA)-'structured liquid' (I1)-isotropic liquid (I2) was observed for a virgin sample on heating at atmospheric pressure. The stable temperature region of the optically isotropic cubic phase becomes narrower on increasing pressure and disappears at pressures above 65 MPa. The T vs. P phase diagram exhibits the existence of a triple point (65 MPa, 207.6°C) for the cubic phase, a new mesophase (X), and the SmA phase, indicating the upper limit for the cubic phase. The new mesophase, denoted here as X, appears in place of the cubic phase at pressures above 65 MPa. The phase diagram also indicates that the Cr4-Cr3, Cr3-Cr2, and Cr2-Cr1 transition lines merge at about 40-50 MPa and then only the Cr4-Cr1 transition is observed in the solid state at higher pressures. Thus the phase transition process on heating changes from the sequence Cr4-Cr3-Cr2-Cr1-SmC-Cub-SmA-I1-I2 at atmospheric pressure to Cr4-Cr1-SmC-X-SmA-I1-I2 in the high pressure region above 65 MPa, via Cr4-Cr3-Cr2-Cr1-SmC-(X)-Cub-SmA-I1-I2 in the low pressure region.  相似文献   

11.
《Liquid crystals》2001,28(12):1785-1791
The phase behaviour of 4'-n-hexadecyloxy-3'-nitrobiphenyl-4-carboxylic acid (ANBC-16) was investigated under hydrostatic pressures up to 200 MPa using high pressure differential thermal analysis. The phase transition sequence crystal 4 (Cr4)-crystal 3 (Cr3)-crystal 2 (Cr2)-crystal 1 (Cr1)-smectic C (SmC)-Cubic (Cub)-smectic A (SmA)-'structured liquid' (I1)-isotropic liquid (I2) was observed for a virgin sample on heating at atmospheric pressure. The stable temperature region of the optically isotropic cubic phase becomes narrower on increasing pressure and disappears at pressures above 65 MPa. The T vs. P phase diagram exhibits the existence of a triple point (65 MPa, 207.6°C) for the cubic phase, a new mesophase (X), and the SmA phase, indicating the upper limit for the cubic phase. The new mesophase, denoted here as X, appears in place of the cubic phase at pressures above 65 MPa. The phase diagram also indicates that the Cr4-Cr3, Cr3-Cr2, and Cr2-Cr1 transition lines merge at about 40-50 MPa and then only the Cr4-Cr1 transition is observed in the solid state at higher pressures. Thus the phase transition process on heating changes from the sequence Cr4-Cr3-Cr2-Cr1-SmC-Cub-SmA-I1-I2 at atmospheric pressure to Cr4-Cr1-SmC-X-SmA-I1-I2 in the high pressure region above 65 MPa, via Cr4-Cr3-Cr2-Cr1-SmC-(X)-Cub-SmA-I1-I2 in the low pressure region.  相似文献   

12.
In situ observation of the optical texture, and X-ray patterns of the pressure-induced mesophase seen for 4′-n-hexadecyloxy-3′-nitrobiphenyl-4-carboxylic acid (ANBC-16) was performed under hydrostatic pressures up to 100MPa using a polarizing optical microscope equipped with a high pressure hot stage and a wide angle X-ray diffractometer equipped with a high pressure vessel respectively. It was found that the pressure-induced mesophase (hereafter refered to as ‘X’) appeared at pressures above 60 MPa, and exhibits a birefringent broken-fan or a sand-like texture that remain unaltered in the SmC phase. The POM-transmitted light intensity curve measured on heating clearly showed the Cr4 → Cr1 → SmC → ‘X’ → SmA → I transition sequence at 80 MPa. The optical texture and the POM-transmitted light intensity measured during a pressure cycle at 185°C showed a reversible change between the cubic and ‘X’ phases. The WAXD pattern of the ‘X’ phase showed a spot-like pattern, suggesting no layered structure for this phase, and also revealed a substantial decrease in the d-spacing of the low angle reflection at 80 and 100 MPa, compared with the d-spacings of the (0 0 1) reflection of the SmC phase and also the (2 1 1) reflection of the cubic phase. It is concluded from these data that the ‘X’ phase is a birefringent hexagonal columnar phase.  相似文献   

13.
We examine the influence of an alternating-current electric field on the lamellar smectic C (SmC) phase of 4'-n-docosyloxy-3'-nitrobiphenyl-4-carboxylic acid, and the formation of a field-induced cubic (Cub) phase with optical isotropy was observed for the first time. The induction was realized down to a temperature 10 K below the zero-field SmC to Cub phase transition temperature (TSmC-Cub). The formation of the induced Cub phase gave rise to a gradual increase of the shear storage modulus, and the modulus recovered quickly in response to the removal of the field, which is of interest as future applications to the stress transferring device.  相似文献   

14.
Symmetrical bi‐1,3,4‐oxadiazole derivatives, namely 5,5′‐bis(phenyl 4‐alkoxybenzoate)‐2,2′‐bi‐1,3,4‐oxadiazole (BBOXD‐n, n = 6, 10, 14, 16), were synthesised. All BBOXD‐n exhibited remarkably stable SmC phases by virtue of the high transition enthalpies of SmC–I. In addition, BBOXD‐6 and BBOXD‐10 showed an enantiotropic nemetic phase with enthalpies of the N–I transition up to 5.16 kJ mol?1. As confirmed by wide‐angle X‐ray diffraction analysis and MM2, molecules of BBOXD‐n showed high‐angle tilting (55–57°) within their smectic C phases.  相似文献   

15.
Liquid-crystalline compounds with different numbers of lactate units, n, in the chiral part were synthesised and mesomorphic properties studied. Physical properties were compared with respect to n. In the compound with one lactate unit in the chiral part the TGBA–TGBC–SmC* phase sequence was detected. For two lactate units the antiferroelectric SmC*A phase occurs. Finally, three-lactate material exhibits the tilted hexatic SmI*(F*) phase below the ferroelectric SmC* phase. Dielectric spectroscopy and spontaneous tilt and polarisation were measured. For the three-lactate compound the temperature dependences were analysed in the vicinity of the SmC*–hexatic phase transition, and these properties compared with the theoretically predicted behaviour.  相似文献   

16.
A photoinduced phase transition and helix untwisting in a new liquid crystal forming the SmC* phase were studied in detail. The compound consists of a cinnamoyl photosensitive fragment with C?=?C double bond capable of photoisomerisation and photocycloaddition. It was shown that ultraviolet (UV) irradiation (365 nm) induces an extreme decrease in phase transitions temperatures (SmC*–SmA*, SmA*–N*, N*–I). Vertically aligned samples in the SmC* phase cause selective light reflection in the visible spectral range. The light action results in a noticeable helix untwisting that causes a shift in the selective light reflection peak to the long-wavelength spectral region. The temperature dependence of spontaneous polarisation P s was measured and it was found that UV irradiation induces a decrease in the values of P s. Photo-optical phenomena taking place in the liquid crystal are attributed to the formation of photoproducts having low anisometry, which disrupts mesophases.  相似文献   

17.
In situ observation of the optical texture, and X-ray patterns of the pressure-induced mesophase seen for 4'-n-hexadecyloxy-3'-nitrobiphenyl-4-carboxylic acid (ANBC-16) was performed under hydrostatic pressures up to 100MPa using a polarizing optical microscope equipped with a high pressure hot stage and a wide angle X-ray diffractometer equipped with a high pressure vessel respectively. It was found that the pressure-induced mesophase (hereafter refered to as 'X') appeared at pressures above 60 MPa, and exhibits a birefringent broken-fan or a sand-like texture that remain unaltered in the SmC phase. The POM-transmitted light intensity curve measured on heating clearly showed the Cr4 →Cr1 →SmC →'X' →SmA →I transition sequence at 80 MPa. The optical texture and the POM-transmitted light intensity measured during a pressure cycle at 185°C showed a reversible change between the cubic and 'X' phases. The WAXD pattern of the 'X' phase showed a spot-like pattern, suggesting no layered structure for this phase, and also revealed a substantial decrease in the d-spacing of the low angle reflection at 80 and 100 MPa, compared with the d-spacings of the (0 0 1) reflection of the SmC phase and also the (2 1 1) reflection of the cubic phase. It is concluded from these data that the 'X' phase is a birefringent hexagonal columnar phase.  相似文献   

18.
Two polycatenar materials composed of a four-aromatic-ring core with a perfluorinated moiety attached in one terminal position through either butylene- or pentylene spacer groups, and three tetradecyloxy chains at the other end (abbreviated as 14PC4F and 14PC5F), were investigated to study the effect of pressure on the phase transition behaviour. A polarizing optical microscope equipped with a high pressure optical hot stage, was used for the purpose. The T vs. P phase diagrams of 14PC4F and 14PC5F were constructed in the pressure region up to 100 MPa. 14PC4F showed the stable crystal (Cr1)-columnar tetragonal (Coltet)-smectic A (SmA)-columnar hexagonal (Colh)-isoropic liquid (I) phase transition sequence under all pressures. 14PC5F exhibited the phase sequence metastable crystal (Cr2)-cubic (Cub)-Coltet-SmA-I in a melt-cooled sample on heating under pressure. But when the melt-cooled Cr2 sample was annealed at 52-54°C for 2-3 h, the stable crystal (Cr1) was formed slowly, giving a stable Cr1-Cub-Coltet-SmA-I phase sequence. The temperature region of the stable cubic phase broadened with increasing pressure. Furthermore a new mesophase of 14PC5F was pressure-induced between the I and SmA phases on cooling at pressures above about 16 MPa. Since the monotropic mesophase exhibited a texture very similar to that of the high temperature Colh phase of 14PC4F with planar orientation, the new phase was assigned at a high temperature columnar hexagonal phase of 14PC5F.  相似文献   

19.
New series of lactic acid derivatives with alkyl terminal chain have been synthesised and their mesomorphic properties studied. We have varied the length of chiral and non-chiral terminal alkyl chains and found that prolonging both chains has a strong effect on the SmA*–SmC* phase transition. Most of the new materials exhibit only paraelectric SmA* phase; for homologues with a longer non-chiral chain (m ≥ 10), the ferroelectric (SmC*) phase appears below the SmA* on cooling and persists down to a room temperature. The role of the chiral terminal chain in the molecule is quite opposite – only its short length supports the existence of ferroelectric phase. Additionally, a hexatic phase appeared below the SmA*–SmC* phase sequence for several homologues at low temperatures. All materials have been studied using standard experimental techniques (differential scanning calorimetry (DSC), texture observations, polarisation and tilt angle measurements, etc.). Liquid crystalline properties of new materials have been compared with the previously prepared and studied lactic acid derivatives.  相似文献   

20.
Heat capacity measurements have been made on ANBC(18) at temperatures from 8 to 490 K by adiabatic calorimetry. All known phases were detected. The temperatures, enthalpies and entropies of transition were determined for the phase transitions observed. On the basis of the entropy of transition to the SmC phase from the D or cubic phases, it is pointed out that the D phase of ANBC and the cubic phase of BABH might be identical in nature. It is shown that the arrangement of 'molecular' cores has a higher degree of order in the isotropic (D and cubic) phases than in the SmC phase, whereas the terminal alkoxy chains are more disordered in the isotropic phases than in the SmC phase. The degrees of disorder in the D and cubic phases relative to the SmC phase are very similar in terms of the entropy of transition per methylene group. The inverted phase sequence in ANBC (SmC D on heating) and BABH (cubic SmC) can be accounted for in terms of the competing roles in the entropy between the molecular core and the chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号