首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microdielectrometry was applied to macroscopically anisotropic media. The distribution and effective portion of the electrostatic energy density, w 14 and J 14, respectively, were calculated, considering the additive contributions of four pairs of microelectrodes. The electric field lines were calculated numerically and investigated experimentally with polarised optical microscopy using thin layers of a nematic liquid crystal with a positive dielectric anisotropy. The applicability of microdielectrometry was investigated using the nematic liquid crystal. Microdielectrometric monitoring was also performed during the preparation process for a solid film with oriented domains with long axes perpendicular to the electric filed cast from an isotropic aqueous solution of hydroxypropyl cellulose under the sinusoidal electric field with large amplitude of 2.0 kV mm?1 and frequency of 105 Hz. In the logarithmic relation between the dielectric constant and loss factor divided by J 14, the two dielectric parameters measured for different film thicknesses at 2.0 kV mm?1 were superposed on a single curve. The curve for the electrically oriented domains was considrably different from that for a randomly oriented polydomain texture found under the electric field with small amplitude of 0.05 kV mm?1 and the same frequency.  相似文献   

2.
The concentration of O2 ? radical anions generated on the surface of hydrated ZrO2 in an H2O2 solution was found to depend on H2O2 concentration. It was shown that this method can be used for detecting H2O2 in solutions at concentration as low as 0.01 wt%. The radical anions were found to react with organic molecules, even at room temperature. The decomposition kinetics of O2 ? radical anions was double-exponential with two reaction rate constants. The existence of two distinct rate constants suggests that two types of O2 ? radical anions with similar spectroscopic properties but different reactivity are present on the surface of hydrated ZrO2. It is highly likely that different arrangements of hydroxyl groups near the radical anions account for the presence of the two types of O2 ? with different reactivity. The rate constants obtained in the presence of the organic compounds studied were found to conform with the expected order of reactivity: toluene > benzene ? hexane.  相似文献   

3.
A novel mixed alkali metal hydrated borate NaCs[B10O14(OH)4] was synthesized under hydrothermal conditions. Its structure was determined by single-crystal X-ray diffraction and further characterized by FT-IR spectroscopy, TG-DTA, powder X-ray diffraction, and chemical analysis. NaCs[B10O14(OH)4] crystallizes in monoclinic space group P2/c with a = 7.6588(3) Å, b = 9.0074(3) Å, c = 11.8708(6) Å, and β = 115.682(3)°. The crystal structure of NaCs[B10O14(OH)4] consists of Na–O, Cs–O polyhedral, and [B10O14(OH)4]2? polyborate anions. [B10O14(OH)4]2? units are connected together through common oxygen atoms forming a 1D helical chain-like structure, which are further connected by O–H···O hydrogen bonds forming a 3D supramolecular structure. Through a designed thermochemical cycle, the standard molar enthalpy of formation of this borate was determined to be ?7888.6 ± 8.1 kJ mol?1 by using a heat conduction microcalorimeter.  相似文献   

4.
The effects of chloride salts on the dissolution of cellobiose in aqueous solution were investigated using calorimetry and 1H NMR. The dissolution of cellobiose in salt solutions is a typical entropy-driven process. The activity of ZnCl2 and LiCl hydrated ions is enhanced as the hydration number decreases with increasing temperature. Zn2+ and Li+ hydrates can interact with the oxygen atoms at the O5 and O6 positions of cellobiose and associate with the Cl? anions, leading to the breakage of cellobiose hydrogen bonds. We found that the solubility of cellobiose in aqueous solutions is on the order of ZnCl2 > LiCl > NaCl > H2O > KCl > NH4Cl, which is consistent with the Hofmeister series. For the first time, we recognized the specific ionic effects of the Hofmeister series on the dissolution of cellobiose in salt aqueous solutions. This finding is helpful for understanding the dissolving mechanism of cellulose in aqueous solvents with salts and providing fundamental knowledge for finding and designing new cellulose solvents.  相似文献   

5.
A homologous series of chiral liquid crystal compounds, N‐methyl‐N‐pentyl‐(S)‐2‐(6‐(4‐(4‐alkyloxyphenyl)benzoyloxy)‐2‐naphthyl)propionamide, with an amide linkage in a chiral tail was synthesized and their mesomorphic properties studied. All the materials possessed an antiferroelectric smectic C (SmCA*) phase, which was confirmed by observations of microscopic texture, switching current behaviour and electro‐optical responses. The spontaneous polarization, P s, and apparent tilt angle, θ, were also measured. The maximum P s values are in the range of 173–222 nC cm?2, and the maximum θ values are in the range of 26–30°.  相似文献   

6.
Hydrophilic materials which refer to a group of cross-linked polymers originally developed in the 60s to produce soft contact lenses are characterised by an equilibrium water uptake in the range 15–95 % by wet weight when hydrated in water or normal saline solution at 25 °C. This ability to absorb controlled amounts of water makes them suitable human tissue substitutes. Four types of hydrophilic materials of different composition and thickness were placed between a 22Na calibrated point source and a single LaBr3: Ce (5 %) detector (Saint-Gobain) at a fixed distance between source and detector. The scatter-to-peak ratio was determined by selecting five scatter angle windows between 25 and 50° (467–376 keV), at 5° intervals, to study how the ratio varied with attenuating material, thickness and composition. From photon spectra recorded a ‘best’ estimate of the depth of the source in the hydrophilic material was obtained by finding the most sensitive scattering window. Theoretical and practical models of the source-to-detector geometries are included and discussed.  相似文献   

7.
This paper presents the development of a model framework for plasma-biofilm and plasma-tissue interactions that can link molecular simulation of plasma chemistry to functions at a cell population level or a tissue level. This is aided with a reactive penetration model for mass transfer of highly transient plasma species across the gas–liquid boundary and a panel of electrical and thermal thresholds considering pain sensation, protein denaturation and lethal electric currents. Application of this model reveals a number of previously little known findings, for example the penetration of plasma chemistry into highly hydrated biofilms is about 10–20 μm deep for low-power He–O2 plasma and this is closely correlated to the penetration of liquid-phase plasma chemistry dominated by O2 ?, H2O2, and HO2 or O2 ?, H2O2, and O3. Optimization by manipulating liquid-phase chemistry is expected to improve the penetration depth to 40–50 μm. For direct plasma treatment of skin tissues at radio frequencies, the key tolerance issue is thermal injuries even with a tissue temperature <50 °C and these can lead to induction of pain and protein denaturation at a small discharge density of 8–15 mA/cm2 over few tens of seconds. These and other results presented offer opportunities to improve plasma-biofilm and plasma-tissue interactions. The model framework reported may be further extended and can be used to non-biomedical applications of low-temperature plasmas.  相似文献   

8.
A novel kind of organic–inorganic material, (TOAMe)7[In(H2O)P2W17O61] (TOAMe?=?trioctylmethylammonium), is synthesized as white oily product from polyoxometalate-type ionic liquid with Dawson structure and simple quaternary ammonium ionic liquid. It was characterized by IR, UV, X-ray diffraction, and thermogravimetric–differential thermal analysis. The determination of (TOAMe)7[In(H2O)P2W17O61] shows that it has a high conductivity with 1.25?×?10?4 S cm?1 at 24 °C. In addition, its electrochemical properties were also investigated by the cyclic voltammetric studies. And then we released that the indium in the complexes can undergo reduction in dimethylformamide, which is unlikely in the water solution as a simple hydrated ion.  相似文献   

9.
《Analytical letters》2012,45(12):2351-2359
Abstract

Amperometric biosensors containing enzymes butyrylcholinesterase or acetylcholinesterase were prepared. The biosensors were employed for studying of cholinesterase reactivator: HI‐6. Competitions between HI‐6 and acetylthiocholine as enzyme substrate were used for determination of IC50 value. Biosensors with butyrylcholinesterase from human serum determined IC50 as (1.00±0.02)×10?6 M; the biosensor with acetylcholinesterase from human erythrocytes performance provided IC50 (3.31±0.13)×10?6 M, the one with human recombinant acetylcholinesterase (2.00±0.06)×10?6 M and finally biosensor with acetylcholinesterase from electric eel (6.17±0.17)×10?6 M when 5 mM acetylthiocholine as substrate was used. We are encouraged to consider presented biosensors as a very useful for evaluation of newly prepared cholinesterase reactivators.  相似文献   

10.
Vanadium pentoxide (V2O5) nanofibers (NFs) with a thin carbon layer of 3–5 nm, which wrapped on V2O5 nanoparticles, and integrated multiwalled carbon nanotubes (MWCNTs) have been fabricated via simple electrospinning followed by carbonization process and post-sintering treatment. The obtained composite displays a NF structure with V2O5 nanoparticles connected to each other, and good electrochemical performance: delivering initial capacity of 320 mAh g?1 (between 2.0 and 4.0 V vs. Li/Li+), good cycling stability (223 mAh g?1 after 50 cycles), and good rate performance (~?150 mAh g?1 at 2 A g?1). This can attribute to the carbon wrapped on the V2O5 nanoparticles which can not only enhance the electric conductivity to decrease the impendence of the cathode materials but also maintain the structural stability to protect the nanostructure from the corruption of electrolyte and the strain stress due to the Li-ion intercalation/deintercalation during the charge/discharge process. And, the added MWCNTs play the role of framework of the unique V2O5 coated by carbon layer and composited with MWCNT NFs (V2O5/C@MWCNT NFs) to ensure the material is more stable.  相似文献   

11.
We have evaluated the ferroelectric and electrical properties of pure BiFeO3 (BFO) and (Bi0.9Ho0.1)(Fe1?xNix)O3?δ (BHFNxO, x = 0.01, 0.02, and 0.03) thin films as frequency varying from 1 to 50 kHz on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. With the frequency from 1 to 10 kHz, the decrease of remnant polarization (2P r ) of the BHFN0.02O thin film was about 27 %, from 26 to 19 μC/cm2, which is one half lower than those of the BHFNxO (x = 0.01 and 0.03) thin films. Otherwise, the variation of the coercive electric field (2E c ) was relatively small, which were 16, 11 and 3 % for the BHFNxO (x = 0.01, 0.02, and 0.03) thin films. The remnant polarization (2P r ) and the coercive electric field (2E c ) values of the BHFN0.02O thin film show the dependence of measurement frequency and it has been fairly saturated about 30 kHz. Also, the leakage current density of the co-doped BHFN0.02O thin film showed three orders lower than that of the pure BFO, 2.14 × 10?6 Å/cm2 at 100 kV/cm.  相似文献   

12.
The effects of Tb substitution on the structural and electrical properties of ferroelectric Bi4Ti3O12 (BTO) thin films grown on Pt/TiO2/SiO2/Si substrates by a sol–gel process have been reported. X-ray diffraction indicated A-site Tb substitutions did not change the polycrystalline bi-layered Aurivillius structure of the BTO, but a lattice distortion was observed. The leakage current behavior at room temperature of the films was studied and it was found that the leakage current density decreased from 10?2 to 10?4 A/cm2 with the increase of x under 150 kV/cm. The remnant polarization (2P r ) and dielectric constant (ε r) increase firstly and then decreases with the increase of the Tb content. We observed a substantial increase in the remnant polarization (2P r ) with Tb substitution and obtained a maximum value of~60 μC/cm2 at an applied electric field of 500 kV/cm for x = 0.4. Moreover, this BTT-0.4 capacitor did not show fatigue behaviors after 1.0 × 1010 switching cycles, suggesting an anti-fatigue character.  相似文献   

13.
A chiral ferroelectric smectic C* liquid crystal (FLC) with the helix pitch p 0?=?330 nm was developed to avoid any scattering of visible light when the helix is not unwound over a certain limit. Planar cells with different FLC layer thickness (16 and 44 μm) have been assembled with helix axis parallel to the glass plates and aligned along the rubbing direction. The ellipticity of the light passing through the cells vs. the electric field was investigated, and a method for evaluating the electrically controlled birefringence via ellipticity measurements has been established. We have found that the FLC cell is an optical retardation layer driven by the electric field, the effective birefringence being proportional to the square electric field. The physical origin of the electrically controlled phase shift of the light passing through the FLC layer has been analysed.  相似文献   

14.
A series of concentrated aqueous solutions of ferric chloride with different chloride:iron(III) ratios has been studied by means of EXAFS to determine the structure around the iron(III) ion of the dominating species in such solutions. The dominating species in dilute acidic aqueous solution of ferric chloride, at less than 1 mmol·dm?3, are the hydrated iron(III) and chloride ions, while in concentrated aqueous solution and in solutions with an excess of chloride ions, up to 1.0 mol·dm?3, it is the trans-[FeCl2(H2O)4]+ complex. Possible higher chloroferrate(III) or dimeric [Fe2Cl6] complexes at room temperature, as proposed in the literature, were not observed in any of the studied solutions in spite of an excess of chloride ions of 1 mol·dm?3.  相似文献   

15.
A k 0-RNAA procedure was developed to determine 129I in a mixed resin sample. CH4 extraction and (NH4)2SO3 back-extraction were used to separate 129I in ashed samples. The 129I target sample for irradiation in the reactor was prepared by heating the (NH4)2SO3 back-extraction solution to reduce its volume and then to dry it in a quartz ampoule. No MgO and LiOH were needed during the target sample preparation. After irradiation, the nuclide 130I was purified by combining hydrated antimony pentoxide column and CH4 extraction separations. A k-factor was determined for the reaction of 127I (n, 2n) 126I and used for iodine chemical yield determination. The apparent 129I concentrations of five nuclear reaction interferences were calculated. The relative standard deviation of three 129I determinations was found to be 3.5 %. The 129I content in the analyzed resin was found to be 1.36 × 10?9 g/g (8.63 × 10?3 Bq/g) with a relative uncertainty of 9.1 %. The detection limit of 129I was calculated to be 7.4 × 10?13 g (4.7 × 10?6 Bq) in a k 0-RNAA of a blank sample.  相似文献   

16.
CaCl2-containing composites have been prepared by depositing the hydrated salt (by incipient wetness impregnation) on three different silica-aluminas with various Si/Al ratios. The surface area and porosity of all the samples were determined by N2-adsorption at ?196 °C, and their water sorption properties were investigated by thermogravimetry linked to differential scanning calorimetry (TG–DSC) in order to determine the quantity of adsorbed/desorbed water and the related heats. The heat released and the quantity of adsorbed water were found to depend on parameters such as the silica-alumina pore diameters, the Si/Al ratio, and the presence of accessible CaCl2 active phase. The short-term stability of both supports and composites has been also checked by performing successive hydration–dehydration cycles. The sample with the lower Si/Al ratio provided the highest heat per surface area of material, and the heat released per mol of water increased with the amount of Al2O3 present in the samples. The deposition of CaCl2 positively acted on the quantity of heat released during the water sorption, and the composite with the higher alumina content (75 mass% Al) showed the largest heat released per m2 of material (2.4 J m?2) compared to those containing 25 and 13 mass% Al (1.4 and 1.2 J m?2, respectively).  相似文献   

17.
The polymer dispersed nematic liquid crystal (LC) with the tilted surface anchoring has been studied. The droplet orientational structures with two point surface defects – boojums and the surface ring defect – are formed within the films. The director tilt angle α = 40° ± 4° at the droplet interface and LC surface anchoring strength Ws ~ 10–6 (J m?2) have been estimated. The bipolar axes within the studied droplets of oblate ellipsoidal form can be randomly oriented are oriented randomly relatively to the ellipsoid axes as opposed to the droplets with homeotropic and tangential anchoring.  相似文献   

18.
In the present work, Zr(IV) has been taken as a homologue for Pu(IV) in order to study the behaviour of Pu in aqueous systems. The direct detection of polymerization of tetravalent zirconium and determination of molecular weight of freshly prepared Zr(IV) polymer was performed by using dynamic light scattering device. Experiments were conducted at 4 different concentrations of zirconium prepared in 1 M nitric acid at 298 K. Particle diameter d 50 was estimated as 255 nm. Differential refractive index increment was also measured. The molecular weight of freshly prepared Zr(IV) polymer was determined as 1,610 Da and second virial coefficient A 2 = ?0.0106 ml g?1 Da by using Debye plot showing that Zr(IV) can undergo hydrolysis even under strongly acidic conditions leading to the formation of high molecular weight hydrated polymers.  相似文献   

19.
We report on the transient species obtained in the biphotonic ionization of acridine in aqueous solution (pH 12.3) induced by the third harmonic of a neodymium-doped glass laser. The species directly produced during the laser pulse were the hydrated electron and the acridine cation which was detected for the first time in fluid media at room temperature. The hydrated electron and the cation decayed with pseudo-first-order kinetics, leading to microsecond transients which were assigned to two different acridine neutral radicals. The acridine cation was neutralized by the OH present in the solution (k = 3 × 108 M−1 s−1), leading to a radical (the “N radical”) characterized by an absorption around 600 nm (λmax = 595 nm; ϵmax ≈ 5000 M−1 cm−1). The hydrated electron reacted efficiently with unexcited acridine (k = 4 × 1010 M−1 s−1) to give a hydrogenated radical (the “C radical”) which showed a broad absorption in the visible region around 500 nm (λmax = 510 nm; ϵmax ≈ 4000 M−1 s−1).  相似文献   

20.
The hydration of NaCl has been widely studied and believed to be important for understanding the mechanisms of salt dissolution in water and the formation of ice nucleus, cloud, and atmospheric aerosols. However, understanding on the poly-NaCl ion pair interacting with water is very limited. Here, we investigated the adsorption of water molecules on (NaCl)3, using both theoretical calculations and anion photoelectron spectroscopy measurements. The calculated vertical detachment energies and the experimental ones agree well with each other. Furthermore, we found that, for neutral (NaCl)3(H2O) n (n = 2–7) clusters, the water-doped cuboid and structures formed by adding water molecules on the Na–Cl edges of the cuboid are energetically favored; water molecules preferentially bind to the Na–Cl edge if the NaCl ion pair has larger partial charges than others. We also found the anionic structures are more various compared with neutral ones, and the Na+ and Cl? ions are hydrated more easily in the anionic clusters than in the corresponding neutrals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号