首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the electric field-induced first order transition from a homeotropic smectic A structure to a polydomain texture that occurs through the nucleation of toric focal-conic domains (TFCDs). The process involves two steps: first, nucleation of TFCDs of a size larger than a critical radius a*, and then a steady growth of TFCDs to a secondary critical radius a**, when surface anchoring effects become dominant and cause a transition from a circular TFCD to an elongated stripe domain (SD). Studies were performed for pure smectic A materials and for smectic A doped with kunipia nanoparticles. Non-destructive 3D imaging with fluorescence confocal polarizing microscopy showed that field-induced TFCDs can nucleate in the smectic A bulk. Clay particles reduce the energy barrier for nucleation as they distort the smectic A layers and thus increase the ground state energy. Simple elastic models of the TFCD and SD allow us to describe the qualitative features of the observed phenomena.  相似文献   

2.
3.
Using a photoelastic modulator-based novel set-up, the electric field-induced in-plane birefringence and the optical rotatory power (ORP) were measured of an antiferroelectric liquid crystalline compound (12OF1M7) in its various phases using 30 µm homeotropic cells. Some specific signatures of the in-plane birefringence and of the ORP for the various phases are being established. A relatively small threshold field is needed for the unwinding process of the antiferroelectric phase with a unit cell of four layers [SmCA*(1/2)] compared with that for two layers [SmCA*(0)]. On application of the electric field on the high temperature side of the SmCA*(1/2) phase (80.1-81.5°C), a field-induced phase transition is shown to occur directly to the SmC* phase, whereas on the lower temperature side (79.4-80.1°C) the transition takes place to SmC* via the SmCA*(1/3) phase. The in-plane birefringence exhibits a critical power law dependence for the SmC*-SmA transition. The ORP changes sign within the temperature range of the phase with a unit cell of three layers, reflecting a change in the handedness during this phase. Using tilted conoscopy, the results for the biaxiality and the apparent tilt angle for a smectic liquid crystal with a tilt angle greater than 18° in the ferroelectric phase are reported. The biaxiality implies the difference in the refractive indices between the two minor axes of the refractive index ellipsoid. The optical transmittance at visible and IR wavelengths for free-standing films reveal characteristic reflection bands for these phases. The modulated structures of the reflected bands appear just above the SmCA* phase and below SmCA*(1/3); these are possibly due to an easy deformation of the phase by the surfaces.  相似文献   

4.
This article demonstrates how parallel equidistant layers of parabolic cyclides can be fitted together theoretically to achieve the layering configurations of the experiments reported in the smectic liquid crystal literature. The mathematical construction of the cylide layers is based on two confocal parabolas which correspond to the physical presence of focal-conic line defects in smectic liquid crystals. Suitable parameterizations of the cyclide surfaces allow the relationship between the layers and these parabolic defects to be presented in three-dimensional plots which show cross-sections of the layers near the defects. The results presented are discussed in relation to the static solutions of smectic continuum theory and experimental observations.  相似文献   

5.
The spreading of a liquid drop over liquid subphase can be driven by change in interfacial tension mediated through a surfactant, volatile solvent or photoinduced reaction. In contrast to the spreading dynamics of a liquid drop, a liquid crystal drop with anisotropic structure can lead to interesting behaviour due to its viscoelasticity and anchoring at the interfaces. Recently, we have reported studies on unusual spreading and retraction dynamics of a smectic domain doped with a fluorescent dye in the collapsed state of a Langmuir monolayer. Under epifluorescence microscope, during excitation, a stack of layers of the dye-doped smectic domain gets sheared causing the domain to spread asymmetrically. Further, due to line tension, the domain transforms into a circular shape. We also find the domain size to be about twice that of the initial size. Interestingly, in the absence of excitation, the domain retracts to a smaller area. During retraction of the domain, successive generation of edge dislocation loops arising from a nucleus results in an increase in the domain thickness. The dynamics of spreading and retraction of the domain can be understood by invoking changes in the spreading coefficient due to photoinduced modification of the interfacial tension.  相似文献   

6.
The synthesis and characterisation is reported of a low molecular weight organic compound to exhibit the biaxial smectic A (SmAb) phase, which shows a transition from the partial bilayer uniaxial SmAd phase to the SmAdb phase as the temperature is lowered.  相似文献   

7.
Complex dielectric spectroscopy (frequency range 5 Hz-13 MHz) has been used to analyse the frequency, temperature and bias-field dependences of the molecular dynamics of a very high-spontaneous-polarization ferroelectric liquid crystalline material exhibiting SmA, SmC* and unknown SmX smectic phases. Different smectic phase transition temperatures have been observed from the study of the temperature dependence of the dielectric strength and the relaxation frequency. The phase transition temperatures (crystalline to isotropic phases) have also been described very accurately from the temperature-dependent symmetric and asymmetric shape parameters of the relaxation function and also the dc conductivity. In a planar aligned cell, two symmetric modes (Goldstone mode and domain mode) have been observed in both the SmX and SmC* phases. One asymmetric mode (X-mode) observed in the SmC* and SmA phases could be related to the interaction of dipoles of the ferroelectric liquid crystals being affected by the surface of the cell. The soft mode, which usually appears very close to the SmC*-SmA phase transition was not observed until the bias field was applied. The second order nature of the SmC*-SmA phase transition was revealed.  相似文献   

8.
Complex dielectric spectroscopy (frequency range 5 Hz–13 MHz) has been used to analyse the frequency, temperature and bias‐field dependences of the molecular dynamics of a very high‐spontaneous‐polarization ferroelectric liquid crystalline material exhibiting SmA, SmC* and unknown SmX smectic phases. Different smectic phase transition temperatures have been observed from the study of the temperature dependence of the dielectric strength and the relaxation frequency. The phase transition temperatures (crystalline to isotropic phases) have also been described very accurately from the temperature‐dependent symmetric and asymmetric shape parameters of the relaxation function and also the dc conductivity. In a planar aligned cell, two symmetric modes (Goldstone mode and domain mode) have been observed in both the SmX and SmC* phases. One asymmetric mode (X‐mode) observed in the SmC* and SmA phases could be related to the interaction of dipoles of the ferroelectric liquid crystals being affected by the surface of the cell. The soft mode, which usually appears very close to the SmC*–SmA phase transition was not observed until the bias field was applied. The second order nature of the SmC*–SmA phase transition was revealed.  相似文献   

9.
The intermolecular interactions in a mixed, binary liquid crystal system are probed using two-dimensional Raman scattering. The sample is a 50/50 by weight blend of 4-pentyl(4-cyanophenyl)cyclohexane (PCH5) and 4-methoxybenzylidene-4-butylaniline (MBBA). The response of the Raman anisotropy of the individual components to step voltages is identical. Furthermore, cross correlation analysis of oscillatory electric field experiments shows only synchronous reorientation between the two constituents. Since neat MBBA aligns perpendicular and neat CH5 aligns parallel to the applied field, the data imply strong intermolecular interactions. Additionally, as previously observed for PCH5, frequency sweep experiments indicate that the flexible parts of the molecules can reorient independently of the rigid cores.  相似文献   

10.
The electric field-induced structural transition of domain walls in nanoconfined nematic liquid crystal systems was investigated on the basis of Landau–de Gennes theory. Two models of nanoconfined domain wall systems were established as splay–bend and twist wall systems under Fréedericksz transitions with two different rotation directions under the effect of electric field E/E0. Results showed that two structural transition processes occur in both models. Pincement transition occurs under a critical external field Ec1/E0. In pincement transition, walls change into two squeezed symmetric surface defects with opposite charges. Surface defects spread along the direction of the substrates and attain surface order reconstruction states as E/E0 is enhanced to Ec2/E0. The increment in cell gap d from the nanoscale to the microscale will not affect Ec2/E0 in both models.  相似文献   

11.
A proton spin relaxation study in the liquid crystal ethyl-[(methoxybenzylidene)-amino] cinnamate is presented. A “phase change” is observed at ≈ 103°C within the smectic A phase. Some liquid-like mobility exists below this temperature.  相似文献   

12.
P. Oswald 《Liquid crystals》1991,10(5):709-714
We describe the dynamics of spreading of a smectic A liquid crystal deposited on a rotating disc. We show the existence of several regimes according to the film thickness. If it is thick enough, the thinning is controlled by bulk permeation; at intermediate thicknesses the surface dissipation dominates, whereas viscous effects begin to be felt only at very small thickness.  相似文献   

13.
We report the observation of a very large surface electroclinic effect in the smectic A* phase of a chiral liquid crystal. In planar-aligned cells of enantiomerically pure W415, the smectic A* phase grows in from the isotropic state with the layer normal rotated ψ = - 24° from the rubbing direction, a consequence of the surface electroclinic tilt θs of the director. The sign of θs depends on the molecular handedness, with θs ≡ 0 in the racemate, and increasing linearly with moderate enantiomeric excess before saturating as ee → 1. A uniform layer structure can be achieved using cross-rubbed alignment layers, in which case thin cells of W415 in the smectic C* phase display V-shaped (analogue) electro-optic switching.  相似文献   

14.
15.
Abstract

We have performed a structural study of the liquid crystal (LC) octylcyanobiphenyl (8CB), deposited on gratings and flat surfaces, using high resolution X-ray scattering as a function of film thickness. 8CB is a room temperature smectic A2, with a layer spacing of 31·6 Å. Glass was used as substrate and treated with either one of the organic surfactants MAP or DMOAP. Surface tension forces cause the liquid crystal molecules to align perpendicularly with respect to the plane of the substrate at the air interface. Competing with the LC-air interface, which is a strong aligner, a grating at the LC-substrate interface produces distortions in the smectic layering with an excess of elastic energy, which favours alignment parallel to the substrate and the grooves. Our purpose was to detect the onset and evolution of parallel alignment as a function of film thickness. The studies used 9 keV (1·403 Å) X-rays focused to a spot size of 2 mm2 at the sample position. In-plane scans, which detect the smectic layers perpendicular to the plane of the substrate, were done at angles φ = 0° and 90° with respect to the gratings to ascertain the molecular orientation, at a nominal X-ray incidence angle of α = 0°. In order to observe regions of varying smectic layer orientation within the film, we performed a series of scans where the out-of-plane tilt angle χ changed from 0°, corresponding to scattering in the plane of the film, to 90°, which corresponds to scattering normal to the surface of the film. The results from these scans were fitted to a multilayer model where the orientation of the smectic layers varies as a function of film depth. The analysis confirmed our earlier observations that surface tension at the air interface plays a dominant role in the alignment of the LC molecules.  相似文献   

16.
Measurements of the orientational and translational order parameters for the nematic, smectic A and smectic C phases of a commercial liquid crystal material are reported. The order parameters have been obtained by analysis of the angular distribution of the intensity of X-rays scattered by a sample aligned by a magnetic field. Results are presented as a function of temperature, and it is found that the apparent orientational order parameter in the smectic C phase decreases with decrease in temperature. This is explained using a model of random tilt. The experimental order parameters are compared with those calculated from a mean field model.  相似文献   

17.
In the chiral smectic C phase of liquid crystals with the phase transition N*-SmC*, texture development depending on the sample thickness is reported. In very thin samples, domains of rectangular-like shape are observed. As two possible tilts of smectic layers are possible for one anchoring direction, smectic layers inside a domain, called twin-like domains, are tilted with respect to layers in outer regions, similarly to crystalline planes in solid crystalline twins. An elastic model of such a twin domain is proposed and its energy determined.  相似文献   

18.
A model for the near surface director profile in a homeotropically aligned smectic liquid crystal is developed based on the idea of the two independent anchoring energies separately associated with the director and the density wave at the surface. These anchoring energies are counterbalanced by the tendency to form the smectic C phase in the bulk. The model yields simple distance-dependent cone angle profiles which are compared with experimental data obtained from the half-leaky waveguide technique to obtain the coherence length for the penetration of the smectic C phase into the smectic A phase and the ratio of the surface to bulk cone angles.  相似文献   

19.
The syntheses of two side chain liquid crystal polymers, a polyacrylate and a polymethacrylate, are reported. In each of the polymers the liquid-crystalline side group carries an asymmetric carbon atom, thereby making some of the liquid crystal phases formed by the polymers optically active and chiral. For the chiral polyacrylate smectic A and chiral ferroelectric smectic C phases are observed, however for the chiral polymethacrylate a cholesteric phase is detected above the smectic A phase. It is found that the smectic A to cholesteric phase transition is mediated by the formation of an intermediary twisted smectic A phase. This intermediary phase is a liquid-crystalline analogue of the Abrikosov flux phase found in Type II superconductors.  相似文献   

20.
Abstract

The syntheses of two side chain liquid crystal polymers, a polyacrylate and a polymethacrylate, are reported. In each of the polymers the liquid-crystalline side group carries an asymmetric carbon atom, thereby making some of the liquid crystal phases formed by the polymers optically active and chiral. For the chiral polyacrylate smectic A and chiral ferroelectric smectic C phases are observed, however for the chiral polymethacrylate a cholesteric phase is detected above the smectic A phase. It is found that the smectic A to cholesteric phase transition is mediated by the formation of an intermediary twisted smectic A phase. This intermediary phase is a liquid-crystalline analogue of the Abrikosov flux phase found in Type II superconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号