首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The microphase separation transition (MST) has been studied for short chain diblock copolymers poly(styrene-b-isoprene) and poly(styrene-b-mma). A detailed analysis of small-angle x-ray scattering (SAXS) profiles in the homogeneous phase allows determination of the interaction parameter and the spinodal temperature Ts of the MST. Ts for the PS/PI diblocks is found to be lower than the glass transition temperature of their hard blocks. This results in a coupling of the MST and the glass transition. Using both structural (SAXS) and thermal differential scanning calorimetry (DSC) methods it is shown that an endothermal peak found in the DSC diagrams is related to the combined effect of the MST and the glass transition. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
The isothermal time–temperature-transformation (TTT) cure diagram is developed in this article to investigate the effect of thermoplastic toughening agent on glass transition temperature (T g) and cure kinetics of an epoxy carbon fiber prepreg, Cycom 977-2 unidirectional (UD) tape. The glass transition temperature was measured using differential scanning calorimetry (DSC) over a wide range of isothermal cure temperatures from 140 to 200 °C. Times to gelation and vitrification were measured using shear rheometry. The glass transition temperature master curve was obtained from the experimental data and the corresponding shift factors were used to calculate the activation energy. The kinetic rate model was utilized to construct iso-T g contours using the calculated activation energy. It was observed that the iso-T g contours did not follow the behavior of the neat epoxy resin, since they deviated from the gel time curve. This deviation was believed to be the effect of the thermoplastic toughening agent. The behavior of the neat epoxy resin in 977-2 was shown by constructing the iso-T g contours using the activation energy obtained from gel time modeling.  相似文献   

3.
Relaxations in a poly(alkyl methacrylate) series are systematically influenced by chemical modifications like the variation of side‐chain length, random copolymerization, or molecular weight. Recent results concerning the influence of chemical modifications on special parts of the relaxation chart are reviewed. The discussion is focused on two points: (i) The influence of chemical modifications on the crossover region of dynamic glass transition, where the relaxation times of α relaxation and Johari Goldstein mode β approach each other, is discussed. A general crossover scenario with a separate onset of cooperative α relaxation is observed for all lower members of this series. High temperature process a above and cooperative α relaxation below the crossover are shown to be distinct processes. Chemical modifications related to an increase in free volume shift this scenario mainly to lower frequency and temperature. Further details depend on the specific modification. (ii) The nanophase separation of incompatible main‐ and side‐chain parts in all higher members of the poly(alkyl methacrylate) series is discussed. This effect is concluded from the coexistence of two dynamic glass transitions in these homopolymers, the conventional a (or α) process and an additional low temperature glass transition αPE . It is shown that the low Tg process is related to cooperative motions in the polyethylene‐like side‐chain parts. The existence of static nanodomains in the range 0.5 to 1.5 nm is confirmed by means of wide and small angle X‐ray scattering data. The estimated nanodomain size is compared with the size of dynamic heterogeneities estimated independently from calorimetric data for the polyethylene‐like glass transition using the fluctuation approach.  相似文献   

4.
We have investigated, in terms of the Cohen-Turnbull theory, a relationship for polycarbonate (PC) glasses between average stress relaxation times, <to, and average free volume sizes,vf〉, obtained from positron annihilation lifetime spectroscopy. This examination suggests that the minimum free volume required for stress relaxation, v*, decreases with decreasing temperature and that, near the glass transition temperature, only a subset of extremely large free volume elements contributes to the stress relaxation of PC glasses. This suggestion is consistent with the idea that near the glass transition temperature, the viscoelastic response is dominated by large-scale, main-chain motion, whereas at lower temperature it is controlled by local motion. Moreover, comparison with the v* value estimated from gas diffusivity through various PC species at room temperature shows that the required free volume size for stress relaxation in the glass transition region is much larger than that for gas diffusion. Previously we showed that the Doolittle equation fails to correlate viscoelastic relaxation times of polymer glasses with changing temperature; determining the free volume fraction, h, from theoretical analysis of volume recovery data and theory, the Doolittle equation is shown to be valid in PC above 135°C (Tg - 14°C) irrespective of temperature and physical aging times. This result supports the idea suggested in the previous article that, as glassy polymers approach the transition region, viscoelastic properties increasingly tend to be controlled by free volume. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Summary: Many works focused on glassy polymers determine values of glass transition temperature (Tg) and an overview of the literature shows that depending on the method used, values of Tg are found different for the same material. In this paper, a review of data collected on different materials are used and interpreted in term of molecular mobility characterized by relaxation time functions. By using three independent experimental procedures (dielectric, thermally depolarized current and calorimetric), we show that the value of the glass transition and the value of the relaxation time at Tg can be correctly determined. It is also shown that the assumption: τ (Tg) = 100 s is constant, is not correct. The protocol proposed also allows the determination of the value of the fragility index “m” of the glass forming liquid with a great accuracy.  相似文献   

6.
Cellulose powder and cellulose pellets obtained by pressing the microcrystalline powder were studied using differential scanning calorimetry (DSC), differential thermal analysis (DTA), and thermal gravimetry (TG). The TG method enabled the assessment of water content in the investigated samples. The glass phase transition in cellulose was studied using the DSC method, both in heating and cooling runs, in a wide temperature range from −100 to 180 °C. It is shown that the DSC cooling runs are more suitable for the glass phase transition visualisation than the heating runs. The discrepancy between glass phase transition temperature T g found using DSC and predictions by Kaelbe’s approach are observed for “dry” (7 and 5.3% water content) cellulose. This could be explained by strong interactions between cellulose chains appearing when the water concentration decreases. The T g measurements vs. moisture content may be used for cellulose crystallinity index determination.  相似文献   

7.
Calorimetric study of Se85−x Te15Sn x (x = 0, 2, 4 and 6) glassy alloys have been performed using Differential Scanning Calorimetry (DSC) under non-isothermal conditions at four different heating rates (5, 10, 15 and 20 °C/min). The glass transition temperature and peak crystallization temperature are found to increase with increasing heating rate. It is remarkable to note that a second glass transition region is associated with second crystallization peak for Sn additive Se–Te investigated samples. Three approaches have been employed to study the glass transition region. The kinetic analysis for the first crystallization peak has been taken by three different methods. The glass transition activation energy, the activation energy of crystallization, and Avrami exponent (n) are found to be composition dependent. The crystallization ability is found to increase with increasing Sn content. From the experimental data, the temperature difference (T p − T g) is found to be maximum for Se83Te15Sn2 alloy, which indicates that this alloy is thermally more stable in the composition range under investigation.  相似文献   

8.
By this Monte Carlo simulation we studied the glass transition of polymethylene using themodified bond-fluctuation model combined with considering the rotational-isomeric state model. Theconfigurational properties in the polymethylene (PM) melts, such as the mean length, the mean energy perbond and the mean square radius of gyration were monitored. We found that the chains cannot be in theequilibrium states after a very long time when the temperature of the dense PM chains decreases to 120 K. Asthe melt vitrifies, these quantities gradually become independent of temperature in a narrow range. The glasstransition temperature T_g depends upon the chain length of PM chains, and extrapolation to (CH_2)_∞givesT_g~∞=212 K. The dynamics in the PM melts was also studied. It was found that the diffusion coefficients canbe described by the Vogel-Fulcher law and the Vogel-Fulcher temperature T_0 is 124 K. This method may beused to investigate the glass transition of other real polymer chains.  相似文献   

9.
A brief derivation of the Kissinger’s equation for analysis of experimental data of non-isothermal glass transition peaks based on the free volume model is given. This equation was applied successfully to Cu0.3(SSe20)0.7 chalcogenide glass for different heating rates. For granted this model, the obtained glass transition activation energy, E g must be constant throughout the whole glass transition temperature range. This required that T g to be determined for three characteristic temperature points for each DSC curve.  相似文献   

10.
Dynamic mechanical analysis was used to study the mechanical properties and microstructureof crazes in polystyrene produced in air or in methanol at different temperatures. A new loss peakwas found at about 82℃,which is assigned to glass transition peak of craze fibrils. The decreaseof glass transition temperature of polymer in craze fibrils is due to the high values of surface tovolume ratio. The glass transition temperature ratio of craze fibrils to bulk material (T_g~l /Tg) hasbeen expressed as a function of the fibrils diameter (d). From T_g~l of craze fibrils,the value of fibrildiameter can be calculated. Annealing the crazed specimen at room temperature makes the fibrilsplastically deform and cause the fibrils to thin slightly,whereas annealing the crazed specimen atthe temperature near T_g of the craze fibrils makes the fibrils bundle together.  相似文献   

11.
The glass transition temperature (Tg) of individual electrospun polymer polyvinyl alcohol fibers of varying diameter was measured using atomic force microscopy (AFM) based nanomechanical thermal analysis. Indentation and bending of individual electrospun fibers using AFM allowed the calculation of the elastic modulus of the polyvinyl alcohol (PVA) fibers across a range of different temperatures. The elastic modulus of electrospun PVA fibers was observed to decrease significantly when passing through Tg, which allowed accurate determination of Tg. The Tg of electrospun PVA fibers was shown to decrease for smaller fiber diameters especially for fiber diameters below 250 nm. This size‐dependent glass transition behavior of electrospun PVA fibers is indicated as being due to polymer chain confinement. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

12.
Specific heat measurements have been made in a-Se and a-Se90M10 (M = In, Sb, Te) alloys using differential scanning calorimetry (DSC) technique to see the effect of additives In, Sb and Te on the specific heat in a-Se. An extremely large increase in the specific heat values has been observed at the glass transition temperature. It has also been found that the values of C p below glass transition temperature (C pg ) and after glass transition (C pe ) are highly composition dependent. This indicates that the additives used in the present study influences the structure of the a-Se. Specific heat and atomic mass values of the additive elements are found to be significant for the explanation of present results.  相似文献   

13.
The temperature dependence of the Gibbs free energy difference (ΔG), enthalpy difference (ΔH) and entropy difference (ΔS) between the undercooled meltand the corresponding equilibrium solid has been analysed for glass forming polymeric materials by calculating ΔG, ΔH and ΔS within the framework of the hole theory of liquids. The study is made for nine samples of glass forming polymeric melts; polypropylene oxide (PPO), polyamid-6 (PA-6), polytetramethylene oxide (PTMO), polyethylene oxide (PEO), polystyrene (PS), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET) and polybutadiene (PB) and three simple organic liquids: tri-α-naphthyl benzene (tri-α-NB), o-terphenyl (o-ter) and phenyl salicylate (salol) in the entire temperature range T m (melting temperature) to T g (glass transition temperature). The ideal glass transition temperature (T K) and the residual entropy (ΔS R) of these samples have also been studied due to their important role in the study of the glass forming ability of materials. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The geometric thermodynamics approach has been used for investigation of the possible glass transition point versus composition curves and their dependence on various parameters for both mixtures and systems with covalent bond between the components (block-, graftand star-polymers) in which phase separation is possible. Predicted relationships are compared with the experiment. Conditions have been determined under which glass transition hinders the liquid-liquid separation.List of principle symbols and abbreviations T ps phase separation (or annealing) temperature - T ps1,T ps2... two-phase region annealing temperature - T ps 0 one-phase region annealing temperature - T g1,T g2 glass transition temperature of the first and second component - T g,T g glass transition temperature of phases with the compositionx andx - T g 0 glass transition temperature of one-phase system - T b temperature bordering the two-phase region at which the glass transition affects the phase separation - Tbin temperature of the liquid-liquid phase transition - M 1,M 2 molecular mass of 1st (rigid) and 2nd (soft) components, correspondingly - x, x compositions (fraction of the second component) in the first and second phases - xtrunc the value of the fraction of the second component at which the concentration profile is truncated by the glass transition - x ent,M ent the composition and molecular mass of the entrance beneath the binodal surface - x cr,M cr the critical composition and molecular mass - x ent,x ent the compositions of the first and second phases at the point of the entrance of the composition curve beneath the binodal surface - xex M ex the composition and molecular mass of the composition curve exit from under the binodal surface - volume fraction - CPC cloud point curve - GTD glass transition diagram - GTCSS glass transition curve of a single phase system - LCP lower critical point - UCP upper critical point  相似文献   

15.
Full atomistic molecular dynamics (MD) simulations on five polymers with different chain backbone (C—C, Si—O, and C—O) and different side groups (—H, one —CH3, and two —CH3) are performed to study the effects of chain flexibility and side groups on the glass transition of polymers. Molecular dynamics simulations of NPT (constant pressure and constant temperature) dynamics are carried out to obtain specific volume as a function of temperature for polyethylene (PE), poly(propylene) (PP), polyisobutylene (PIB), poly(oxymethylene) (POM), and poly(dimethylsiloxane) (PDMS). The volumetric glass transition temperature has been determined as the temperature marking the discontinuity in slope of the plots of V–T simulation data. Various energy components at different temperatures of the polymers are investigated and their roles played in the glass transition process are analyzed. In order to understand the polymer chain conformations above and below the glass transition temperature, dihedral angle distributions of polymer chains at various temperatures are also studied.  相似文献   

16.
Notch Izod impact strength of poly(propylene) (PP)/glass bead blends was studied as a function of temperature. The results indicated that the toughness for various blends could undergo a brittle‐ductile transition (BDT) with increasing temperature. The BDT temperature (TBD) decreased with increasing glass bead content. Introducing the interparticle distance (ID) concept into the study, it was found that the critical interparticle distance (IDc) reduced with increasing test temperature correspondingly. The static tensile tests showed that the Young's modulus of the blends decreased slightly first and thereafter increased with increasing glass bead content. However, the yield stress decreased considerably with the increase in glass bead content. Dynamic mechanical analysis (DMA) measurements revealed that the heat‐deflection temperature of the PP could be much improved by the incorporation of glass beads. Moreover, the glass transition temperature (Tg) increased obviously with increasing glass beads content. Differential scanning calorimetry (DSC) results implied that the addition of glass beads could change the crystallinity as well as the melting temperature of the PP slightly. Thermogravimetric analysis (TGA) measurements implied that the decomposition temperature of the blend could be much improved by the incorporation of glass beads. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The influence of mono and divalent nontransition and transition metals on the glass transition and mechanical properties of polyurethane anionomers have been investigated. NCO-terminated prepolymer prepared from 4,4′-methylene-bis(phenyl isocyanate) (MDI) and poly(caprolactone) glycol (PCL) was chain extended with dimethylolpropionic acid (DMPA), and the anionomers obtained by neutralization of the prepolymer. The glass transition temperatures of polyurethane anionomers have been studied as a function of the counterion. From simple electrostatic considerations, it is shown that a linear relationship exists between the glass transition temperature and ionic potential (?) for these particular materials. The relation is; Tg = A? + B. The mechanical properties are greatly affected by the type of the counterion, and in some cases, such as monovalent and nontransition metals, the mechanical properties of the anionomers improved by increasing the ionic potential. On the other hand, transition metals containing anionomers exhibited good mechanical properties but no relationship was observed between the mechanical properties and the ionic potential. The extent of water absorption of PU anionomers follows the same relative trends as the tensile strengths of the transition metals with filled and partially filled d-orbitals.  相似文献   

18.
A new series of diethoxyphosphinyl‐substituted imidazolium ‘room‐temperature ionic liquids’ (RTILs) were synthesized and characterized. The new compounds 1 – 12 (Table 1) were shown to have similar densities, but higher viscosities, than common ionic liquids. The new materials remain liquid over a broad temperature range, possess extremely low vapor pressures, display relatively high thermal stabilities (up to 325°), and decompose in a two‐step process. Analysis of the solid/liquid phase transition showed that all of the new RTILs possess low glass‐transition temperatures (Tg) associated with an intense change in molar heat capacity (ΔCpm).  相似文献   

19.
Summary: Amorphous syndiotactic polystyrene (sPS) was crystallized at room temperature in Norbornadiene (bicyclo[2,2,1]-hepta-2,5-diene), Mesitylene (1,3,5- Trimethylbenzene), 3-Carene (3,7,7-trimethyl bicyclo[4,1,0]hept-3-ene) and DMN (1,4-Dimethylnaphthalene) to form the sPS-solvent complex (δ form) with respective solvent molecules. In situ HTFTIR studies showed that the δ form to γ form transformation temperature occurs well below the glass transition temperature of sPS, which is depressed due to the presence of solvent in the amorphous phase; higher the solvent content in the complex, lower the transition temperature. Glass transition temperatures determined by Modulated differential scanning calorimetry (MDSC) coincide with the transition temperatures, indicating that the δ form transforms into γ form at the glass transition temperature for these complexes. Such a behavior is very different from the behaviour of the sPS- solvent complexes formed by dichloromethane, chloroform, toluene, o-dichlorobenzene, decalin (cis-trans) etc. and for these complexes the transition occur well above the Tg. 1  相似文献   

20.
The evolution of lap-shear strength (σ) with healing temperature T h at symmetric and asymmetric amorphous polymer−polymer interfaces formed of the samples with vitrified bulk has been investigated. It has been found that the square root of the lap-shear strength behaves with respect to healing temperature as σ 1/2 ~ T h both at symmetric and asymmetric interfaces. Basing on this scaling law between σ and T h, the values of the surface glass transition temperature ( Tgsurface ) \left( {T_{\rm{g}}^{\rm{surface}}} \right) have been estimated for a number of amorphous polymers by the extrapolation of the experimental curves σ 1/2 ~ T h for symmetric polymer−polymer interfaces and, in some cases, for asymmetric, both compatible and incompatible, polymer−polymer interfaces, to zero strength. A significant reduction in surface glass transition temperature Tgsurface T_{\rm{g}}^{\rm{surface}} with respect to the glass transition temperature of the polymer bulk ( Tgbulk ) \left( {T_{\rm{g}}^{\rm{bulk}}} \right) , reported earlier, has been confirmed by the use of the new proposed approach. The quasi-equilibrium surface glass transition temperature Tgsurface T_{\rm{g}}^{\rm{surface}} of amorphous polystyrene (PS) has been predicted in the framework of an Arrhenius approach using the plot “logarithm of healing time − reciprocal surface glass transition temperature Tgsurface¢¢ T_{\rm{g}}^{\rm{surface}}\prime \prime and the activation energy of the surface alpha-relaxation of PS has been calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号