首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

As a typical class of electrically light-transmittance-switchable (ELTS) composites materials, polymer dispersed liquid crystal (PDLC) films have been widely used in displays, smart windows, light shutters, etc. However, the commercialised PDLC film still requires a comparatively high voltage to maintain its transparent state, leading to huge power consumption and even a potential safety risk. In this regard, we proposed a ‘heat followed UV’ stepwise polymerisation strategy for preparing a kind of ELTS film with a low driving voltage (~20.7 V) through constructing a coexistent system of polymer dispersed and polymer stabilised liquid crystal (PD&SLC). In this new PD&SLC system, vertically orientated polymer networks were formed within LC domains to induce the vertical alignment of LC, thereby reducing the driving voltage. Also, the as-made PD&SLC film exhibited good flexibility due to the high content of polymer. Moreover, the effects of the liquid crystalline polymerisable monomers content on the polymer morphologies as well as the electro-optical properties of the as-made PD&SLC films were elaborately investigated.  相似文献   

2.
ABSTRACT

Polymer-dispersed liquid crystal (PDLC) films containing a series of monomers with different alkyl chain lengths were prepared by nucleophile-initiated thiol-ene click reaction. The effect of alkyl chain length of monomers, dye and temperature on electro-optical properties of PDLC films was investigated. It was found that the alkyl chain length and polymerisation rate of monomers together determine the size of liquid crystal (LC) droplets, thus affecting the electro-optical properties of PDLC. In addition, the type and content of dyes could be optimised to obtain PDLC materials with better comprehensive properties for display.  相似文献   

3.
ABSTRACT

The structures of the liquid crystal (LC) molecules have a key role in impacting the electro-optical performance of a polymer dispersed liquid crystal (PDLC) film. In this paper, the relationship between the LC molecular structures and the electro-optical properties of PDLC films is investigated based on an unexplored cyano-terminated tolane compounds (CTTCs) doped E8 LCs/UV polymers system. Due to the high polarity of CTTCs, LCs doped with the cyano-terminated tolane (CTT) molecules exhibit high birefringence and large positive dielectric anisotropy. On the whole, PDLC films doped with the CTT molecules exhibit a lower driving voltage than that doped with the pure E8. More excitingly, PDLC films based on CTT molecules with larger length-to-width ratio and longer conjugated system show higher contrast ratio (CR) and faster response time. Eventually, the mechanism of the effects of CTT-based molecular structures and the relationship between the electro-optical performance of PDLC films and CTT molecules are illustrated. This work paves a new way for optimising the electro-optical properties of PDLC films.  相似文献   

4.
In this paper, polymer-dispersed liquid crystal (PDLC) films which based on the acrylate and the thiol monomers were first prepared by ultraviolet-initiated polymerisation. The electro-optical properties and morphologies of the PDLC films were systematically investigated. The functionality of thiol monomers and their feed ratio showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol–acrylate reaction and acrylate monomer polymerisation reaction. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers. When added four-functional thiol monomer PETMP with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved.  相似文献   

5.
Zhiqing Shi  Ying Wang 《Liquid crystals》2013,40(12):1746-1752
ABSTRACT

Nucleophile-initiated thiol-ene click reaction is a highly novel and efficient method of preparing polymer-dispersed liquid crystal (PDLC) films. The effects of thiol monomers on the electro-optical properties of PDLC films prepared by nucleophile-initiated thiol-ene click reaction were investigated in this work. The thiol monomers were dithiol, trithiol, tetrathiol or their mixture. It was found that the increase of functionality could lead to the increase of threshold voltage and saturation voltage and the decrease of off-state transmittance. The influence of reaction temperature was also investigated. The results indicated that functionality and reaction temperature had combined effects on the electro-optical properties of PDLC films.  相似文献   

6.
Polymer dispersed liquid crystal (PDLC) films with the size gradient of the LC droplets were prepared based on the epoxy/acrylate hybrid polymer matrix. The ultraviolet (UV) intensity gradient was induced by the UV-absorbing dye over the thickness of the samples. Taking advantage of the difference between the epoxy monomers and acrylate monomers in polymerisation rates and the UV intensity gradient, the gradient distribution of the LC droplet size was formed in PDLC films. The effect of the size gradient of the LC droplets on the electro-optical and the light-scattering properties of PDLC films was investigated. The results showed that due to the size gradient distribution of the LC droplets, PDLC films could exhibit the strong light scattering in the UV-visible-near infrared (VIS-NIR) region. Consequently, it provides a potential approach for modulating NIR light transmittance.  相似文献   

7.
Polymer-dispersed liquid crystal (PDLC) films were prepared by photochemical polymerisation with a series of (meth)acrylate monomers. The effects of monomer structure on the morphology of polymer networks in the PDLC films were studied. The acrylate monomers without sidegroup chain formed uniform polymer networks. The methacrylate monomers with methyl as their sidegroup chains formed lace-like networks. The size of the LC droplets increased with increasing the length of the flexible chain of both methacrylate and acrylate monomers. Meanwhile, the effects of the morphology of the polymer network on the electro-optical properties of PDLC films were also investigated.  相似文献   

8.
Polymer-dispersed liquid crystal (PDLC) films were prepared from thermal polymerisation-induced phase separation in heat-curable monomers/nematic liquid crystal (LC) mixtures. For PDLCs with a certain amount of LCs, the microstructure and the refractive index of polymer networks could be influenced by the relative content of epoxy monomers, owing to their different chemical structures. The effect of these factors on the electro-optic properties of films was also investigated.  相似文献   

9.
In this paper, polymer dispersed liquid crystals (PDLC) films with LC content as low as 40 wt% were prepared, and the electro‐optical properties were carefully investigated. To accomplish this, different (meth)acrylate copolymerizaiton monomers have been used. The electro‐optical properties and morphologies of the PDLC films were strongly influenced by the chemical structure of copolymerization monomers (hydroxypropyl methacrylate (HPMA), glycidyl methacrylate, hydroxypropyl acrylate) and their feed ratio. Lower driven voltage and higher contrast ratio were achieved when the PDLC films showed a morphology with suitably LC domain size. At high HPMA content, a thin polymer film was formed on the surface of PDLC samples, which is beneficial to decrease the total LC content in PDLC devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
To study effects of the crosslinking agent/diluents/thiol on morphology of the polymer matrix and the electro-optical properties of polymer-dispersed liquid crystal (PDLC) films, samples were prepared by ultraviolet (UV)-initiated polymerisation. Due to the interaction between thiol–acrylate reaction and acrylate monomers polymerisation, the sample compositions were the foremost determinant to the microstructures which in turn played an essential role on the electro-optical properties of the PDLC films. With the increasing content of the crosslinking agent, the LC droplet size decreased, while the thiol had a contrary effect on the LC droplet size. It was demonstrated that the superior properties of the low-driven voltage (37.2 V), the high contrast ratio (148.2), the short response time (14.9 ms) and the high saturation transmittance (86.6%) could benefit from a novel microstructure which had a dense surface and meshes with microspheres attached. It was of great significance for the optimisation and the potential applications of the PDLC films.  相似文献   

11.
《Liquid crystals》2000,27(4):467-475
The effects of fluorinated acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystal (PDLC) films are reported. The partial fluorination of host polymer matrices resulted in improved optical properties and better defined morphologies. An enhancement in contrast ratio was observed for fluorinated systems containing trifluoroethyl acrylate (TFEA) and hexafluoroisopropyl acrylate (HFIPA). Conversely, the incorporation of methyl acrylate (MA), a chemically similar non-fluorinated acrylate, resulted in no appreciable change in contrast ratio and an increase in relaxation time. Scanning electron microscopy morphological studies were conducted to understand further the influence of fluorinated monomers in PDLC systems.  相似文献   

12.
Polymer dispersed liquid crystal (PDLC) films were prepared by photopolymerization of liquid crystal (LC)/polymerizable monomers/photoinitiator composites. The effects of the structures of the polymerizable monomers on the electro‐optical properties of PDLC films were investigated. It was found that the length of the molecular chain and the rigidity and flexibility of molecules influenced the structure of the polymer network in the PDLC films somewhat, and then affected the electro‐optical properties of the composites accordingly. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1369–1375, 2008  相似文献   

13.
The effects of fluorinated acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystal (PDLC) films are reported. The partial fluorination of host polymer matrices resulted in improved optical properties and better defined morphologies. An enhancement in contrast ratio was observed for fluorinated systems containing trifluoroethyl acrylate (TFEA) and hexafluoroisopropyl acrylate (HFIPA). Conversely, the incorporation of methyl acrylate (MA), a chemically similar non-fluorinated acrylate, resulted in no appreciable change in contrast ratio and an increase in relaxation time. Scanning electron microscopy morphological studies were conducted to understand further the influence of fluorinated monomers in PDLC systems.  相似文献   

14.
Effects of the content of fluorinated alkene-terminated liquid crystal (LC) molecules on the physical properties of the fluorinated alkene-terminated LC/E8 mixture were studied. The morphology and electro-optical properties as they doped in polymer-dispersed liquid crystal (PDLC) films were investigated. The detailed discussion of the obtained results is given. As a result, comparing with the physical properties of the series of LC mixtures with the same content of the analogous fully saturated compounds doped with E8, we find that the birefringence is significantly larger for the LC mixture with the alkene-terminated materials. Both fluorinated alkene-terminated LC molecules and the analogous fully saturated compounds doped with E8 reduce the driving voltage of PDLC films. Moreover, PDLC films with the fluorinated alkene-terminated LC molecules possessed higher contrast ratio and faster response time than that of the PDLC films prepared by adding the same mass fraction of the analogous fully saturated compounds. Thus, the ability to manipulate physical properties of LC mixture and electro-optical properties of PDLC films by changing the LC molecular structures may have future relevance for new LC structures design and applications of PDLC films.  相似文献   

15.
The different fluorinated liquid crystal (LC) molecules doped to E8 were used as LC component to prepare polymer dispersed liquid crystal (PDLC) films. The mass fraction of the LC mixture is fixed 50.0 wt%. Results indicate that doping 8.0 wt% fluorinated LC molecule ME3CP to E8 significantly reduced the driving voltage of the PDLC films, and the driving voltage reduced with the rise of mass fraction of ME3CP. Besides, the terminal flexible chain length of the fluorinated LC molecule influenced the LC mixture properties based on E8, such as the dielectric anisotropy, birefringence and viscosity of the LC mixture, and the morphology and the electro-optical properties of PDLC films were controlled not only by the physical properties of the LC mixture, but also by the terminal flexible chain length of the fluorinated LC molecule .  相似文献   

16.
ABSTRACT

The relationship between linear chain (ethylene oxide units) length of polymerisable monomers with morphology, electro-optical properties and 13C nuclear magnetic resonance (NMR) spectroscopy of the corresponding polymer-dispersed liquid crystal (PDLC) films was investigated. The preferred liquid crystal molecule alignment and permanent memory effect of PDLC were greatly influenced by the length of the molecular chain of prepolymers to be incorporated as a polymer matrix. By increasing the number of ethylene oxide in prepolymer chain and maintaining the number of functionalities (polymerisable groups in each monomer molecule), the permanent memory effect of PDLC increased, as proved by solid-state 13C NMR spectroscopy.  相似文献   

17.
In this paper, polymer‐dispersed liquid crystal (PDLC) films consisting of liquid crystal (LC)/monomers/indium tin oxide (ITO) nanoparticles with good near‐infrared absorption property had been fabricated, and the influence of the ITO nanoparticles modified with 3‐methacryloxypropyltrimethoxysilane (KH570) on the PDLC films was systematically studied. First, different liquid crystal content was studied to obtain PDLC films with good electro‐optical properties. And then, various weight ratio of ITO nanoparticles was added to samples. While the content of ITO nanoparticles was increased, the saturation voltage increased and the CR decreased. Though the electro‐optical properties of PDLC samples reduced with the addition ITO nanoparticles, the near‐infrared absorption property of films was enhanced.  相似文献   

18.
Polymer dispersed liquid crystal (PDLC) films can be switched electrically from a light-scattering off-state to a highly transparent on-state. Thin films were prepared via a polymerization-induced phase separation process, using electron beam radiation. The liquid crystal (LC)/polymer materials were obtained from blends of an eutectic nematie mixture E7 and a polyester acrylate-based polymer precursor. The optical and electro-optical properties of the PDLC films obtained depend strongly on the LC concentration. The LC solubility limit in the polymer matrix and the fractional amount of LC contained in the droplets were determined by means of calorimetrie measurements.  相似文献   

19.
In this work, the thiol‐ene click reaction is employed to fabricate polymer‐dispersed liquid crystal (PDLC) films by photoinitiated polymerization. The PDLC films are prepared by systematic variation of key conditions: variety and content of ‐ene monomer, liquid crystal (LC) content, curing time, and curing light intensity. We find that both the morphologies and electro‐optic properties of these films are adjustable. When increasing the length of alkyl main chain of ‐ene monomers, the driving voltages reduce, but in turn, the contrast ratio decreases. Increasing ‐ene monomer content raises the driving voltages as well as the response time, and the increase of LC content lowers the driving voltages but has a negative effect on the contrast ratio. The changes to the curing conditions (both curing time and UV light intensity) can be used to modify the driving voltages, response time, and contrast ratios of PDLC films. These comparative studies will elucidate new insights in commercial applications of intelligent PDLC films.  相似文献   

20.
Polymer as an important component of polymer dispersed liquid crystal (PDLC) has a great influence on electro-optical properties. In this letter, the effect of molecular weight of polymer matrix on the electro-optical properties of PDLC films was investigated with reversible addition fragmentation transfer (RAFT) polymerization. It was found that the saturation voltage and memory effect were apparently influenced by molecular weight of polymer which can be regulated efficiently by irradiation time, while the morphology of liquid crystal droplets kept unaltered. It was estimated that the increase of molecular weight of polymer enhanced entanglement between polymer and liquid crystal, which induced the different surface interaction and electro-optical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号