首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of aromatic copoly(ester)s containing conjugated double bonds was prepared from p-phenylene bis(acrylic acid) (PPBA) with a mixture of methylhydroquinone (MHQ) and various hydroxycarboxylic acids in the presence of diphenylchlorophosphate (DPCP) and pyridine as a catalyst and solvent. The phase behavior of these polymers was studied by differential scanning calorimetry (DSC) and thermal optical polarized microscopy. Under an optical polarized microscope all copoly(ester)s show a nematic thermotropic liquidcrystalline phase. Upon heating, these polymers undergo a photocrosslinking reaction characterized by IR and solubility analysis. This crosslinking reaction also takes place in the liquid-crystalline phase with the retention of the nematic order in the final crosslinked solid. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
The new acrylate monomers 4-(ω-acryloyloxyalkyloxy)-N-(9-methyl-2-carbazolylmethylene) anilines containing from 2 to 11 methylenic units in their alkyl group and a carbazolyl group in the mesogenic unit were synthesized and polymerized by azobisisobutyronitrile (AIBN) as radical initiator and by low-energy electron beam (EB) initiation. The thermal properties of the resulting polymers were examined using differential scanning calorimetry and thermal optical polarizing microscopy. The polymer prepared by AIBN with a hexamethylene spacer exhibited a nematic phase from 73 to 170°C and with an undecamethylene spacer exhibited a smectic phase from 55 to 202°C. The isotropization temperature of the polyacrylates increased with increasing the number of carbons of the methylenic spacer. The yield of the resulting polymer was changed by EB irradiation temperature from 4.5 to 41%. The highest yield was obtained when the monomer was polymerized in a liquid-crystalline phase. The same tendency was observed in the molecular weight of the resulting polymers. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Nematic liquid-crystalline elastomers (LCEs) are weakly cross-linked polymeric networks that exhibit rubber elasticity and liquid-crystalline orientational order due to the presence of mesogenic groups. Three end-on side-chain nematic LCEs were investigated using real-time synchrotron wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and thermogravimetry (TG) to correlate the thermal behaviour with structural and chemical differences among them. The elastomers differed in cross-linking density and mesogen composition. Thermally reversible glass transition temperature, Tg, and nematic-to-isotropic transition temperature, Tni, were observed upon heating and cooling. By varying the heating rate, Tg0 and Tni0 were determined at zero heating rate. The temperature dependence of the orientational order parameter was determined from the anisotropic azimuthal angular distribution of equatorial reflections seen during real-time WAXS. Results show that the choice of cross-linking unit, its shape, density, and structure of co-monomers, all influence the temperature range over which the thermal transitions take place. Including multi-ring aromatic groups as cross-linkers increased the effective stiffness of the cross-linking, resulting in a higher glass transition temperature. The nematic-to-isotropic transition temperature increased in the presence of multi-ring aromatic structures, as either cross-linkers or mesogens, particularly when the multi-ring structures were larger than the low-molar-mass mesogen common to all three samples.  相似文献   

4.
A thermotropic liquid-crystalline (LC) polyester, poly[(ethylene terephthalate)-co-(p-oxybenzoate)] (PET40/OBA60) (OBA content: 60 mol %), is investigated by fluorescence technique using two model compounds: dimethyl terephthalate (DMT) and methyl methoxybenzoate (MMB) and is demonstrated to form an intermolecular ground-state complex between the terephthalate and OBA moieties. The change in fluorescence of PET40/OBA60 film is studied from 25°C to 450°C. The peak wavelength change for fluorescence of the intermolecular ground-state complex from 394 to 430 nm was observed in the temperature range between Tg and the LC transition temperature (115~ 250°C). This is attributed to the electronic distribution change between terephthalate and OBA moieties in the excited state, which play roles of acceptor and donor, respectively. The increase in the fluorescence intensity from the temperature near the annealing temperature to the temperature near the isotropic temperature (287~370°C) is suggested to be the increase in LC configuration and the formation of a more stable excited state due to the electronic distribution change between terephthalate and OBA moieties. The lifetime of PET40/OBA60 film quenched from LC temperature (300°C) to room temperature is in agreement with that of the nonannealed one, which is due to the fact that the deactivation process of the sample quenched from LC temperature is in accord with that of the nonannealed one. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
The synthesis and characterisation of three sets of symmetric dimeric compounds composed of seven-membered oxazepinedione heterocyclic rings were carried out. All the dimers possess the tetradecyl- (n = 14) alkyl side chain attached to the nitrogen atom of the oxazepinedione core. The oxazepinedione core in turn was connected with varied connecting spacers (n = 4, 6, 8, 10 and 12). The dimers were spectroscopically characterised by FT-IR, 1H-NMR, 13C-NMR and elemental analysis techniques. The compounds were investigated for liquid crystalline properties using differential scanning calorimetry and polarising optical microscopy with heating assembly. The precursor imines 2a–e itself started exhibiting liquid crystalline SmA/tilted hexatic mesophase. Further fusion of 2a–e with maleic anhydride, succinic anhydride and phthalic anhydride gave the novel oxazepinedione-derived symmetric dimers 3a–e, 4a–e and 5a–e respectively. The dimers 3a–e and 4a–e did not exhibit any liquid crystal (LC) properties. However, the phthalic anhydride-fused oxazepinediones 5a–e show monotropic nematic liquid crystalline phase. The results indicate that the formation of mesophase is dependent on the type of fused oxazepinedione ring.  相似文献   

6.
Alkene monomers containing phenyl or biphenyl carboxylate benzoate ester based on a mesogenic group of varied lengths of carboxyl oligo (ethanediol) monomethyl ethers as the terminal were synthesized. They were grafted onto poly(methyl-hydrosiloxane) by the platinum-catalyzed hydrosilylation process. The thermal transition temperatures and mesophase textures of monomers and of polymers were characterized by using differential scanning calorimetry (DSC), x-ray diffraction, and polarized optical microscopy with a hot stage. The factors governing mesophase textures and thermal transition temperatures are discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
ABSTRACT

We provide an overview of the effect of the molecular structure on the dielectric properties of dimers exhibiting nematic and twist-bend nematic phases with special focus on how the conformational distribution changes are reflected by the dielectric behaviour. Nematic dimers show distinctive dielectric properties which differ from those of archetypical nematic liquid crystals, as for example, unusual temperature dependence of the static permittivity or dielectric spectra characterised by two low-frequency relaxation processes with correlated strengths. The interpretation of such characteristic behaviour requires that account is taken of the effect of molecular flexibility on the energetically favoured molecular shapes. The anisotropic nematic interactions greatly influence the conformational distribution. Dielectric behaviour can be used to track those conformational changes due to dependence of the averaged molecular dipole moment on the averaged molecular shape. Results for a number of dimers are compared and analysed on the basis of the influence of details of the molecular structure, using a recently developed theory for the dielectric properties of dimers.  相似文献   

8.
Twelve symmetrical dimeric materials consisting of a nonamethylene (C9) spacer and either phenyl 4‐(4′‐alkylphenyl)benzoate, phenyl 4‐(4′‐alkylcyclohexyl)benzoate or phenyl 4‐(4′‐alkylbicyclohexyl)carboxylate mesogenic units were prepared and their mesogenic behaviour characterised by POM, DSC and XRD. All of the materials exhibited nematic phases with clearing points in excess of 200 °C. Four compounds were found to exhibit the twist‐bend nematic phase, with one material exhibiting a transition from the NTB phase into an anticlinic smectic ‘X’ phase. Across all three series of compounds the length of terminal chain is seen to dictate, to some degree, the type of mesophase formed: shorter terminal chains favour nematic and NTB mesophases, whereas longer terminal aliphatic chains were found to promote smectic phases.  相似文献   

9.
Thermotropic liquid crystal polyimide which has neither an ester linkage nor a carbonate linkage was prepared by the polymerization of 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA) and 1,3-bis[4-(4′-aminophenoxy)cumyl)]benzene (BACB). This polyimide shows the liquid crystal phase at 549-593 K. Mixing this liquid crystal polyimide or copolymerizing BACB decreases the melt viscosity of the thermoplastic polyimide (Aurum). © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Photoluminescence behavior (polarization, lifetime) related to liquid-crystal (LC) formation was examined for the thermotropic liquid-crystalline polyesters poly [(ethylene terephthalate)-co-(p-oxybenzoate)] (PET40/OBA60) (OBA content: 60 mol %) and poly [(ethylene 2,6-naphthalene dicarboxylate)-co-(p-oxybenzoate)] (PEN50/OBA50) (OBA:50 mol %). The Growth of liquid-crystalline (LC) phases of PET40/OBA60 proceeded during annealing. even at low temperature (e.g., 138°C) and were promoted by an increase in annealing temperatures Ta in the experimental temperature range 138–260°C. The concentration dependence of fluorescence spectra of PET40/OBA60 in solution suggested that the fluorescences at 325 and 395 nm can be attributed to monomer and ground-state dimer, respectively. The increase in dimer fluorescence intensity and the decrease in the fluorescence anisotropy ratio r from 0.06 to –0.14 were observed with growth of LC phases. These effects are explained by an increase in the ground-state dimer population and a slight change in the dimer configuration, respectively. PEN50/OBA50 showed monomer fluorescence at 395 nm due to naphthalenedicarboxylate segments and excimer fluorescence at 430 nm. The r value for the excimer fluorescence decreased from zero to about ?0.14 with growth of the LC phase. Such an extraordinary phenomena, in comparison with the usual excimer fluorescences which occurs through energy migration, could be interpreted as the result of formation of high-concentration excimer sites induced by chain orientation in LC domains. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
ABSTRACT

The synthesis and characterisation of several members of the 1,ω-bis(4-cyanobiphenyl-4′-yl) alkane (CBnCB) and the 1-(4-cyanobiphenyl-4′-yloxy)-ω-(4-cyanobiphenyl-4′-yl) alkane (CBnOCB) homologous series are reported. The new odd members described CB5CB, CB13CB, CB4OCB, CB8OCB and CB10OCB all exhibit twist-bend nematic and nematic phases. The members of these series already reported in literature, CB7CB, CB9CB, CB11CB and CB6OCB, were also prepared in order to allow for a direct comparison of their transitional properties. The properties of these dimers are also compared to those of the corresponding members of the 1,ω-bis(4-cyanobiphenyl-4,-yloxy) alkanes (CBOnOCB). For any given total spacer length, for odd members of these series, the nematic–isotropic transition temperatures and associated entropy changes are greatest for the CBOnOCB dimer and lowest for the CBnCB dimer. These trends are understood in terms of molecular shape. For short spacer lengths, the twist-bend nematic–nematic transition temperature (TNTBN) is higher for the CBnOCB series than for the CBnCB series but this is reversed as the spacer length increases. Of the CBOnOCB dimers, a virtual value of TNTBN was estimated for CBO3OCB and TNTBN was measured for CBO5OCB. These values are considerably lower than those observed for the corresponding members of the CBnCB or CBnOCB series. The dependence of TNTBN on molecular structure is discussed not only in terms of the molecular curvature but also in the ability of the molecules to pack efficiently. As the temperature range of the preceding nematic phase increases, so the twist-bend nematic–nematic transition entropy change decreases and the transition approaches second order for the longer spacers. For comparative purposes, the transitional behaviour of the even-membered dimers CB6CB, CB5OCB and CBO4OCB is reported and differences accounted for in terms of molecular shape.  相似文献   

12.
The novel photochromic liquid-crystalline polyacrylates containing a spirooxazine group were synthesized. The photochromic polymer containing (4-penta- methyleneoxy)biphenylene moiety at the 5-position of spironaphthoxazine showed nematic phase from 122.9 to 133.8°C. The photochromic polymer containing undeca- methylene instead of pentamethylene showed smectic phase from 93.1 to 169.7°C. On the other hand, the photochromic polymer containing both undecamethylene as a spacer and spironaphthoxazine-bound biphenylene moiety at 9′-position did not show any liquid crystallinity. All spirooxazine-containing liquid-crystalline polymers showed photochromism in the solid state at room temperature. Because the shape of the absorption spectra of the photochromic quenched liquid-crystalline polymer films was almost the same as those of the photochromic amorphous polymer films, the photochromic properties did not depend on the mesophase in the polymers examined. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3513–3522, 1999  相似文献   

13.
Four series of copoly(amide-ester)s containing conjugated double bonds were prepared by using direct polycondensation in the presence of diphenylchlorophosphate (DPCP) and pyridine. Series I–III were prepared from para, meta-aminophenol, or their mixture with p-phenylene bis(acrylic acid) (PPBA), p-carboxylic cinnamic acid (PCCA), and stilbenedicarboxylic acid (SDBA), respectively. Series IV was prepared from a mixture of aminophenols [2-methyl 4-aminophenol (MePAP) and m-aminophenol (MAP)] with a mixture of diacids (PPBA and SDBA). Thermotropic liquid-crystalline behavior of these polymers was studied by differential scanning calorimetry (DSC), and optical polarizing microscopy equipped with a heating stage. Series I , series II , and P40–P100 of series IV could undergo crosslinking reaction by heating. However, series III could undergo crosslinking reaction only by photoirradiation upon heating. After crosslinking reaction occurred, the properties of these polymers were also examined by DSC, TGA, WAXD, and IR. The synthesized polymers could be crosslinked in the liquid-crystalline phase with retention of the order in the final crosslinked solid. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
A new class of non-symmetric dimeric compounds derived from 4-cyano-4′-hydroxybiphenyl in which two rigid parts are connected via flexible spacers have been designed and synthesised. These materials possess trialkoxy chains attached at one end of the molecule, while the other end consists of a biphenyl moiety terminated with the highly polar cyano group. The molecular structures of these dimers have been confirmed by elemental analysis and spectroscopic data and their phase behaviour has been characterised by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Almost all of the synthesised materials exhibit liquid crystalline properties depending on the number of carbon atoms in the terminal chains, where all short chains derivatives form nematic phases and depending on the length of the internal spacer long terminal chains homologues display crystalline or unidentified smectic phase.  相似文献   

15.
ABSTRACT

The synthesis and characterisation of two new sets of non-symmetric liquid crystal dimers is reported, the 1-(4-substitutedazobenzene-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl)hexanes (CB6OABX) and 1-(4-substitutedazobenzene-4′-yloxy)-6-(4-cyanobiphenyl-4′-yloxy)pentanes (CBO5OABX). The terminal substituents are methyl, methoxy, butyl, butyloxy, nitrile and nitro. All the CB6OABX dimers exhibit twist-bend nematic (NTB) and nematic (N) phases. The CBO5OABX dimers also all show an N phase but only the butyl and butyloxy homologues exhibit the NTB phase. The transitional behaviour of the non-symmetric dimers is compared to that of the corresponding symmetric dimers, the 1,5-bis(4-substitutedazobenzene-4′-yloxy)pentanes (XABO5OABX) and either 1,7-bis(4-cyanobiphenyl-4′-yl)heptane or 1,5-bis(4-cyanobiphenyl-4′-yloxy)pentane. The XABO5OABX dimers all show a nematic phase and in addition, the butyl homologue exhibits a smectic A phase. The difference in transitional behaviour between the CB6OABX and CBO5OABX dimers is attributed to the difference in their molecular shapes arising from different bond angles between the para axis of the cyanobiphenyl unit and the first bond in the spacer. Specifically, the all-trans conformation of a CBO5OABX dimer is more linear than that of the corresponding CB6OABX dimer. Differences within each set of dimers are attributed to changes in the average molecular shape and the strength of the mixed mesogen interaction on varying the terminal group. Crystal structures are reported for CB6OABOMe, CBO5OABNO2 and MeOABO5OABOMe.  相似文献   

16.
17.
A new series of liquid crystal (LC) monomers – not only contain a double bond but also contain an azo group – were designed and synthesised. The length of side groups in the LC monomers containing azobenzene ester varied from 1 to 2 methylene units, and the length of the substituted groups in the main chain varied from 1 to 3 methylene units. The molecular structures of the intermediates and target compounds were confirmed by Fourier transform infrared, ultraviolet and visible spectrum and nuclear magnetic resonance (NMR) spectroscopy. The thermal phase behaviour of the LC monomers was investigated by polar optical microscopy coupled with hot stage and differential scanning calorimetry (DSC). In this paper, the effect on the LC zone with the substituents were investigated, and with the increased methylene of main chain, the melting point and the phase transition temperature of the substance will be lowered and LC regions will be narrower.  相似文献   

18.
A series of fully aromatic, thermotropic polyesters, derived from 3-phenyl-4,4′-biphenol (MPBP), nonlinear 4,4′-benzophenone dicarboxylic acid (4,4′-BDA), and various other comonomers was prepared by the melt polycondensation method and characterized for their thermotropic liquid crystalline behavior by a variety of experimental techniques. The homopolymer of MPBP with 4,4′-BDA had a fusion temperature (Tf) at 240°C, exhibited a nematic liquid crystalline phase, and had a narrow liquid crystalline range of 60°C. All of the copolyesters of MPBP with 4,4′-BDA and either 30 mol % 4-hydroxybenzoic acid (HBA), 6-hydroxy-2-naphthoic acid (HNA) or 50 mol % terephthalic acid (TA), 2,6-naphthale-nedicarboxylic acid (2,6-NDA) and low Tf values in the range of 210–230°C, exhibited a nematic phase, and had accessible isotropization transitions (Ti) in the range of 320–420°C, respectively. As expected, each of them had a broader range of liquid crystalline phase than the homopolymer. They had a “frozen” nematic, glassy order as determined with the wide-angle X-ray diffraction (WAXD) studies. The morphology of each of the “as-made” polyesters had a fibrous structure as determined with the scanning electron microscopy (SEM), which arises because of the liquid crystalline domains. Moreover, they had higher glass transition temperatures (Tg) in the range of 167–190°C than those of other liquid crystalline polyesters, and excellent thermal stabilities (Td) in the range of 500–533°C, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Chiral side-chain liquid-crystalline (LC) polysiloxanes containing isosorbide groups were graft copolymerised with poly(methylhydrogeno)siloxane, a chiral LC monomer 6-(4-methoxy-benzoyloxy)-hexahydro-furo[3,2-b]furan-3-yl 4'-(4-undec-10-enoyloxy-benzoyloxy)-biphenyl-4-yl adipate and a nematic LC monomer 4'-(4-methoxy-benzoyloxy)-biphenyl-4-yl 4-(2-undec-10-enoyloxy-ethoxy)-benzoate. The chemical structures and LC properties of the monomers and polymers were characterised by use of various experimental techniques including Fourier transform infrared spectroscopy (FTIR), 1H-nuclear magnetic resonance (NMR), element analyses (EA), differential scanning calorimetry (DSC), polarised optical microscopy (POM) and X-ray diffraction (XRD). All the chiral LC polymers showed LC properties with very wide mesophase temperature ranges and the chiral component in the LC polymer systems lead to the appearance of a cholesteric phase. The polymers bearing most chiral LC monomer component showed smectic phases by reason of regular structures in the polymer systems. With the increase of another nematic LC monomer in the polymers, the regular polymer structures were destroyed because of different chemical structures between the two kinds of LC monomers, leading to the disappearance of the smectic arrangement.  相似文献   

20.
Phase and relaxational transitions in the commercial thermotropic liquid-crystalline copolyesters Ultrax 4002 and Ultrax 4003 were studied by X-ray diffraction, differential scanning calorimetry, and mechanical analysis. In spite of only a slight difference in the compositions of the copolyesters, considerable differences in their structure and temperature behavior were observed. In particular, it was shown that the degree of crystallinity differs by more than a factor of 2 for the as-spun fibers upon annealing above the glass-transition temperature. The type of crystalline structure as well as the ability to crystallize are also different. The glass-transition temperature of both copolyesters is determined as the temperature of the appearance of mobility of the most rigid comonomer units and does not depend on the composition of the materials. Annealed copolyesters are semicrystalline materials with a two-phase structure, where the crystalline phase coexists with a liquid-crystalline one. The structure of the latter is characterized by aperiodic positions of smecticlike layers in space. On heating the materials the crystalline phase is transformed into a pseudohexagonal mesophase indicating features of a second-order phase transition. Received: 20 July 1999 Accepted: 20 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号