首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In order to fabricate efficient and superior performance liquid crystal (LC) devices, the physical parameters of the LC mesogens can be duly altered by incorporating non-mesogenic materials like quantum dots (QDs), graphene and polymers. In the present work, the effect of adding core/shell QDs in two ferroelectric liquid crystals (FLCs), along with the change in their physical properties, has been investigated. A small concentration of QDs is dispersed into the two FLCs and temperature variations of vital parameters like spontaneous polarisation (Ps), rotational viscosity, response time, relative permittivity and relaxation strength have been measured for both the FLC materials. The contrast ratio, UV–near visible absorbance as well as photoluminescence (PL) of both the mesogens have also been determined and compared. A faster electro-optical response and the induced phenomenon of PL with a temperature-dependent low-frequency relaxation mode have been observed in Felix 17/100 after the addition of QDs. The present study also provides valuable information about the interaction between QDs and the two FLC systems depending upon polarisation–field (P–E) coupling. The same dopant can interact with FLCs in dissimilar fashion if the intrinsic properties of both the FLCs are different thereby producing different modifications in their respective physical parameters.  相似文献   

2.
We report the deposition of Langmuir–Blodgett (LB) thin films of low-weight dispersed composite systems of ferroelectric liquid crystals (FLCs)–functionalised silver (Ag) nanoparticles. Because of their amphiphilic nature the molecules form stable Langmuir monolayers, which were transferred to silicon substrates. We noticed that absorption wave numbers are present for each bond constituting FLC–nanoparticles composite system, ensuring a complete transfer of molecules from water sub-phase. XRD showed intense peaks at 2θ = 3.2° due to the layer structure of FLC molecules. We infer from the morphology of LB films that doping of nanoparticles do not provide any hindrance to SmC* layer structure of FLC molecules. The photoluminescence study indicates blue shift in emission spectra and peak intensity increases with Ag nanoparticles concentration.  相似文献   

3.
This paper reviews our recent work on the photorefractive effect of ferroelectric liquid crystals (FLCs). The photorefractive effect is defined as the optical modulation of the refractive index of a medium as a result of a variety of processes. The interference of two laser beams in a photorefractive material establishes a refractive index grating. This phenomenon enables the creation of different types of photonic applications. FLCs exhibit fast electric field response, and the orientation of the molecular axis of FLCs changes its direction according to the change in direction of the spontaneous polarization (Ps). When two laser beams interfere in a photoconductive FLC, an orientational grating is formed. The mechanism of the formation of the grating is based on the response of the Ps to the photoinduced internal electric field. The time of formation of the refractive index grating is significantly shorter in FLC materials.  相似文献   

4.
The electro-optical and dielectric responses of the fullerenes C60-doped ferroelectric liquid crystal (FLC) nanocolloids are reported. Order parameter and phase transition temperature remain invariant as a function of varying dopant concentration (0.10 wt% to 0.50 wt%). Faster switching response of nanocolloids comparing to that of the non-doped FLC is manifested by increase in the localised electric field (around 76% increment for 0.50 wt%), while reduction in the spontaneous polarisation could be the result of anti-parallel correlation amid dopant and FLC dipoles. Decrease in dielectric constant, absorption strength, dielectric strength and rotational viscosity of FLC nanocolloids than that of non-doped FLC is the other consequence of C60 doping. Goldstone-mode relaxation frequency is found to be increased with increasing doping concentration of C60 in FLC.  相似文献   

5.
In this paper, we present the results of the terahertz measurements of liquid crystal (LC) ferroelectric BaTiO3 nanoparticles (nps) suspensions in the range of frequency from 0.3 up to 3.0 THz. Two different sol-gel methods and the harvesting technique were used to fabricate the nanoparticles. Five LC materials served as hosts for the suspensions: two single compounds: 6CHBT and 2,3′,5′-trifluoro-4-(4-pentylcyclohexyl)-4′-(trifluoromethoxy)-1,1′-biphenyl, and three mixtures: 1867, 2037 and 2020. We characterise, for the first time, the refractive indices and absorption parameters of suspensions with harvested nps in the terahertz range and show how the process of the nps’ preparation affects their response. We observed the increase of birefringence for few LC suspensions in comparison with the pure LCs. The highest increase of birefringence was for 2020 suspension with one kind of ferroelectric nps. On the other hand in most cases the addition of ferroelectric nps to LC causes the increase of its absorption in the THz range. The measurements of LCs terahertz properties by using time-pulsed spectrometer were performed.  相似文献   

6.
T. Joshi  A. Kumar  J. Prakash 《Liquid crystals》2013,40(11):1433-1438
We present the characterisation and dielectric relaxation spectroscopy of a ferroelectric liquid crystal (FLC), namely KCFLC 7S. It was observed that the studied FLC material possesses the tendency of homeotropic alignment on glass substrates coated with indium tin oxide. A low frequency dielectric mode, along with the Goldstone mode, was observed in the SmC* phase of the FLC material. The low frequency mode became more dominant on doping gold nanoparticles into the FLC material. The occurrence of the low frequency mode was attributed to the ionisation–recombination-assisted diffusion of slow ions present in the FLC material. The behaviour of the relaxation frequency of the low frequency mode with applied dc bias and temperature was also demonstrated.  相似文献   

7.
A novel strategy based on self-assembly technology was devised for design of photosensitive material as a ferroelectric liquid crystal (FLC) alignment layer. This development offers new tools for the study and control at the molecular level of the interaction of FLCs with solid surfaces. The photoreactive material was self-assembled to the substrate by covalent bond linkage due to a special chemical adsorption reaction. Through ester bond linkage, a cyano group with strong polarity was introduced to be terminus of the film. Under irradiation of linearly polarised ultraviolet light, an optically anisotropic self-assembled film was easily obtained. The irradiated film was demonstrated to result in homogenous alignment of FLC by optical transmittance measurements and polarising optical microscopy images of a FLC cell at different rotation angles. The alignment quality of the FLC on this self-assembled monolayer film is comparable to that of commercial rubbed polyimide film. Furthermore, it was also found that the fine alignment of the FLC may be related to the smoothness of the self-assembled film surface owing to its polar end.  相似文献   

8.
Nanocolloids consisting of a ferroelectric liquid crystal (FLC) doped with different concentrations (0.10 and 0.50 wt.%) of surface treated gold nanoparticles (GNPs) differing in size (1.77, 5.5 nm) are prepared and characterised. The effects of doping on the clearing temperatures as well as electro-optic and dielectric parameters of a FLC mixture are presented. The clearing temperatures remain invariant with doping. A remarkable increase in the spontaneous polarisation is noticed due to the addition of the GNPs with chiral monolayer capping. Tilt angle and switching time, at least in their tendency, become slightly reduced and increased, respectively. Depending on the size of the nanoparticles, surface plasmon resonance is observed to be slightly increased by increasing the surface. In addition, a small change in localised electric field is found upon doping. The increase in the dielectric permittivity and the dielectric strength is observed and attributed to the parallel coupling between the dipoles of functionalised GNPs, induced by external electric field, and the vector of the spontaneous polarisation of the FLC matrix. A decrease in relaxation frequency is observed. A substantial increment of one order in the dc conductivity is also observed for the nanocolloids.  相似文献   

9.
The behaviour of dielectric relaxation process has been investigated in four ferroelectric liquid crystal (FLC) materials having different spontaneous polarisation (Ps) values. Ps effect on the permittivity in four different FLCs has been carried out in highly anchored sample cells around ~8 μm thick. It has been found that the main contribution to the dielectric permittivity in chiral Smectic C (SmC*) phase is due to Goldstone mode (GM) and partially unwound helical mode (p-UHM). In higher PS value FLC materials, the p-UHM process is found to dominate the dielectric properties. It has also been observed that p-UHM process is highly dependent on the probing ac voltage and temperature, whereas GM is found to be weakly dependent of probing voltage and temperature in SmC* phase of all the studied FLC materials. The influential contribution of p-UHM has exhibited the dielectric properties in its intrinsic frequency range making the materials suitable for futuristic display and photonics devices.  相似文献   

10.
Colloids of elongated γ-Fe2O3 magnetic nanoparticles (NPs) in a ferroelectric liquid crystal (FLC) were studied. Decreasing the dielectric strength of the Goldstone mode and changing the value of Cole–Cole parameter were found in the suspensions. It was also shown that the effect of introducing magnetic particles into a FLC consists of increasing the electric field strength magnitude required for unwinding its helical structure. Effect of magnetic field on dielectric properties of the FLC colloid was also studied. Dielectric constant measured under static magnetic field is different for the FLC host and FLC doped with the NPs.  相似文献   

11.
In this article, a newly synthesised ferroelectric liquid crystal (FLC) material, namely LAHS 22, has been characterised. The characterisation of the FLC material has been performed using dielectric relaxation spectroscopy, differential scanning calorimetry and polarisation optical microscopy. We observed an enhancement in the dielectric and electro-optical properties of the FLC material by incorporating gold nanoparticles (GNPs)-decorated multiwalled carbon nanotubes (MWCNTs). The GNPs-decorated MWCNTs cause an increment in dielectric dispersion (up to kHz), absorption, spontaneous polarisation and rotational viscosity of the FLC material. The pure and GNPs-decorated MWCNTs doped FLC cells were analysed by means of various dielectric spectroscopic and optical measurements. The observed enhancement in the dielectric and electro-optical properties of the FLC material has also been studied with concentration of GNPs-decorated MWCNTs in FLC material. The GNPs-decorated MWCNTs/FLC composites are not only of fundamental importance, but also useful materials for device applications such as liquid crystal displays and memory devices.  相似文献   

12.
Through the ferroelectric nanoparticles of BaTiO3 (BTO) doping, the response time for the frequency modulation of the polymer-dispersed liquid crystal (PDLC) was improved. The BTO-doped PDLC cells were prepared by polymerisation induced phase separation (PIPS) process using UV light. The capacitance of the PDLC composites was measured with an impedance analyzer in the frequency range of 100 Hz–1 MHz at 1 V. The dynamic signal for the response time of the PDLC devices was monitored through a digital oscilloscope. The electro-optical properties of the PDLC were found to strongly depend on the doped BTO concentration. The BTO doping caused a large increase in the capacitance. The dielectric constants were drastically decreased in the samples with rather low BTO doping ratio at a high frequency. No outstanding difference in the rising time of the LC was observed in the BTO-doped PDLC device, but the falling time was significantly decreased from 0.334 to 0.094 s. The present results imply that the nanoparticle-doping technology could improve the electro-optical performance of the PDLC requiring fast response and frequency modulation, such as optical modulators and PDLC-hybrid electroluminescence device for flexible electronic devices.  相似文献   

13.
ABSTRACT

We study a nanocomposite consisting of a ferroelectric liquid crystal and a magnetic nanoparticle in order to explore the possibility of using it as a magnetic resonant imaging contrast agent which will measure a field of 20 V/m. To achieve this we use the ferroic properties exhibited by the nanocomposite. We used the ferroelectric liquid crystal 2-(4-((2-fluorooctyl)oxy)phenyl)-5-(octyloxy)pyrimidine mixed with FeCo nanoparticles nominally 2–3 nm in diameter in concentrations of 0.56, 4.3 and 10.8 wt%. The 10.8 wt% sample was chosen for our study because the nanoparticles acted as a lubricant for the ferroelectric liquid crystal. This concentration yields nanoparticle clusters in about 5 ? 10 μm diameter spherulites. An electric field as low as 5V/cm is enough to turn and realign the spherulites where the particles are contained. We estimate the value of the magnetic in a spehrulite and associate it to the number of spherulites aligned as a function of electric field. We find thus that we can achieve low electric fields.  相似文献   

14.
Cd1?xZnxS/ZnS core/shell-structured quantum dot (QD)-doped ferroelectric liquid crystal (FLC) Felix 17/000 has been investigated in the present study. In the SmC* phase, the effect of QD on the dielectric and electro-optical properties of FLC has been studied as a function of dopant concentration. A substantial change in the different parameters like tilt angle, spontaneous polarisation, response time and relative permittivity has been observed for the composite system. Nearly two times faster response of the composite system with lower operating voltage is one of the promising results of the present study. The faster optical response along with the decreased value of spontaneous polarisation can be utilised in low power consumption liquid crystal displays.  相似文献   

15.
ABSTRACT

Electrocaloric effect (ECE) in two ferroelectric liquid crystalline (FLC) materials has been evaluated by mean of two indirect characterization methods: the photopyroelectric (PPE) technique and the polarization current reversal one. The obtained results show a good correspondence of the adiabatic temperature change associated with the ECE evaluated from both methods. This validates the possibility to use the PPE technique to investigate the ECE in FLCs. This study also demonstrates that FLCs can be used as electrocaloric material. More particularly, it shows that as for their solid homologous, liquid crystals displays more pronounced ECE in the vicinity of a first order transition than that measured near to second-order one.  相似文献   

16.
It is well established that incorporation of nanoparticles (NPs) in the structure of ferroelectric liquid crystals (FLCs) leads to a decrease in their electrooptic response time. Several approaches have been suggested to explain this effect (decrease in rotational viscosity of FLCs, ions enhanced localised electric field, dipole–dipole interaction among NPs and FLC molecules, FLC ordering). In this article, we will report the role of the voltage divider formed by the structural elements of a FLC cell based on ferroelectric liquid crystal/gold nanospheres (FLC/GNSs) dispersion in enhancement of the switching time. Using the impedance spectroscopic measurements, it was demonstrated that the dispersing of GNSs leads to the increase in the voltage drop on FLC/GNSs layer in comparison with the pristine FLC one. Consequently, the electrooptic response time of the FLC/GNSs cell is faster than that of the pristine one. However, the rotational viscosity of the FLC does not depend on the presence of the GNSs.  相似文献   

17.
New functional multicomponent ferroelectric liquid crystalline mixtures have been designed while searching smart self-assembling materials with submicrometre periodicity of the helical structure responding definite demands for application in electro-optic devices and photonics that exploit the deformed helix ferroelectric effect. The resulting designed mixtures possess the paraelectric smectic A* and the tilted ferroelectric smectic C* phases over a very broad temperature range down below the room temperature. The mesomorphic, electro-optic and dielectric properties have been studied and discussed. The presence of a very stable enantiotropic ferroelectric smectic phase exhibiting almost temperature independent helical pitch within 150–250 nm range and reasonably high values of the tilt angle might allow these mixtures to be applicable for practical purposes.  相似文献   

18.
The present work concerns with the investigation of the effect of dispersion of Silica (SiO2) nanoparticles (NPs) in host ferroelectric liquid crystal (FLC) KCFLC10S on the dielectric and electro-optical properties and ultraviolet-visible (UV-VIS) absorption spectra of the pristine and dispersed systems. We have found that the dispersion of SiO2 NPs in the host FLC strongly influences the various properties of dispersed systems. No evidence of aggregates and clumps in the dispersed system has been observed. Due to SiO2 NPs dispersion, a rapid decrease in dielectric permittivity ε’, increase in conductivity σ with frequency, increase in spontaneous polarisation Ps and decrease in switching time with bias voltage have been observed. Based on the absorption spectra, we have also made an attempt to link the electro-optical and dielectric response with the mechanism of FLC–NPs interactions.  相似文献   

19.
A systematic study highlighting the effect of cadmium selenide quantum dots (CdSe QDs) with varying concentrations of 0.05, 0.10 and 1.0 wt% doping on the electrooptical and dielectric parameters of ferroelectric liquid crystal (FLC) is presented. No considerable change is observed in phase transition temperature and tilt angle with CdSe QDs doping at lower and higher dopant level. Substantial enhancement of localised electric field at higher doping level (1.0 wt%) of CdSe QDs manifested the ≈48% reduction in the switching response of FLC nanocolloids at 30°C. Reduction in the spontaneous polarisation, dielectric constant and absorption strength could be attributed to the antiparallel correlation among dopant and matrix molecules, ion capturing in the capping additive layer and enhancement of the rotational viscosity of the nanocolloids, respectively. Goldstone mode relaxation frequency is found to be decreased with doping up to 0.10 wt% concentration and showed reverse effect at higher QDs concentration. QDs doping effect on the photoluminescence intensity is also discussed.  相似文献   

20.
Nanocomposites comprise functionalised multi-walled carbon nanotubes (0.00 wt%, 0.05 wt% and 0.07 wt%) and ferroelectric liquid crystals (FLCs) have been studied in the 5-μm- and 12-μm-thickness cells. Effect of anchoring energy and dopant concentration on the mesomorphic, electro-optic and dielectric behaviour of FLC has been explored. Fast switching time and increase in permittivity of non-doped FLCs and resulting nanocomposites as a function of increased cell thickness (from 5 to 12 μm) can be attributed to the change in the anchoring energy and direct current (DC) conductivity of the non-doped and doped systems. π–π stacking between carbon nanotubes and FLC layers give rise to the spontaneous polarisation of nanocomposites. Effect of cell thickness and anchoring energy on bistability are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号