首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
New conjugated polymeric columns with a hexagonal symmetry were prepared via topochemical polymerisation of star-shaped supramolecular liquid crystals formed by hydrogen bonding between a phloroglucinol core and pyridine derivatives containing a diacetylenic group in the alkyl chain. The mesomorphic properties of the supramolecular monomer and its photopolymerisation behaviour were investigated. The supramolecular liquid crystal exhibited a rectangular columnar mesophase. Photopolymerisation of supramolecular monomer along the column axis in the liquid crystalline state provided well-ordered conjugated polydiacetylenic columns with a two-dimensional hexagonal symmetry. Fourier transform infrared and ultraviolet–visible spectroscopy affirmed that conjugated polydiacetylenes were produced by 1,4-polymerisation of the supramolecular monomer along the column axis. X-ray diffraction analysis showed that a two-dimensional columnar order in the supramolecular monomer was maintained after photopolymerisation, and that the resulting polydiacetylene had a hexagonal array of conjugated columns. Our controlled methodology provides a new route to conjugated polymeric columns with highly ordered structures by self-assembly and polymerisation of star-shaped supramolecular liquid crystals.  相似文献   

2.
The synthesis, structural, and retrostructural analysis of a library of self‐assembling dendrons containing triethyl and tripropyl ammonium, pyridinium and 3‐methylimidazolium chloride, tetrafluoroborate, and hexafluorophosphate at their apex are reported. These dendritic ionic liquids self‐assemble into supramolecular columns or spheres which self‐organize into 2D hexagonal or rectangular and 3D cubic or tetragonal liquid crystalline and crystalline lattices. Structural analysis by X‐ray diffraction experiments demonstrated the self‐assembly of supramolecular dendrimers containing columnar and spherical nanoscale ionic liquid reactors segregated in their core. Both in the supramolecular columns and spheres the noncovalent interactions mediated by the ionic liquid provide a supramolecular polymer and therefore, these assemblies represent a new class of dendronized supramolecular polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4165–4193, 2009  相似文献   

3.
In this paper, a modified Cyclotriveratrylene was synthesized and linked to a branched Polyethylenimine, and this unique polymeric material was subsequently examined as a potential supramolecular carrier for Doxorubicin. Spectroscopic analysis in different solvents had shown that Doxorubicin was coordinated within the hollow-shaped unit of the armed Cyclotriveratrylene, and the nature of the host–guest complex revealed intrinsic Van der Waals interactions and hydrogen bonding between the host and guest. The strongest interaction was detected in water because of the hydrophobic effect shared between the aromatic groups of the Doxorubicin and Cyclotriveratrylene unit. Density functional theory calculations had also confirmed that in the most stable coordination of Doxorubicin with the cross-linked polymer, the aromatic rings of the Doxorubicin were localized toward the Cyclotriveratrylene core, while its aliphatic chains aligned closer with amino groups, thus forming a compact supramolecular assembly that may confer a shielding effect on Doxorubicin. These observations had emphasized the importance of supramolecular considerations when designing a novel drug delivery platform.  相似文献   

4.
Semifluorinated first-generation self-assembling dendrons attached via a flexible spacer to electron-donor molecules induce pi-stacking of the donors in the center of a supramolecular helical pyramidal column. These helical pyramidal columns self-organize in various columnar liquid crystal phases that mediate self-processing of large single crystal liquid crystal domains of columns and self-repair their intracolumnar structural defects. In addition, all supramolecular columns exhibit a columnar phase at lower temperatures that maintains the helical pyramidal columnar supramolecular structure and displays higher intracolumnar order than that in the liquid crystals phases. The results described here demonstrate the universality of this concept, the power of the fluorous phase or the fluorophobic effect in self-assembly and the unexpected generality of pyramidal liquid crystals.  相似文献   

5.
A catalytic heterogenous Suzuki polymerization method was developed by confining the Pd(II)-catalyzed cross coupling reactions to take place exclusively in the nanochannels of dendritic mesoporous silica nanoparticles. Conjugated polymers with various monomer combinations, including donor-acceptor structures, were obtained in high yields. The molecular weights of the obtained polymers were well controlled with narrow molecular weight distributions (PDI value down to 1.13). All the polymeric products were highly soluble in common organic solvents, granting them with high processability. All the features of this confined Suzuki polymerization method endow the conjugated polymers great potential in optoelectronic applications.  相似文献   

6.
Superior artificial light‐harvesting systems (ALHSs) require exceptional capacity in harvesting light and transferring energy. In this work, we report a novel strategy to build ALHSs with an unprecedented antenna effect (35.9 in solution and 90.4 in solid film). The ALHSs made use of a conjugated polymeric supramolecular network (CPSN), a crosslinked network obtained from the self‐assembly of a pillar[5]arene‐based conjugated polymeric host ( CPH ) and conjugated ditopic guests (Gs). The excellent performance of the CPSN could be attributed to the following factors: 1) The “molecular wire effect” of the conjugated polymeric structure, 2) aggregation‐induced enhanced emission (AEE) moieties in the CPH backbone, and 3) high capacity of donor–acceptor energy transfer, and 4) crosslinked structures triggered by the host–guest binding between Gs and CPH . Moreover, the emission of the CPSN could be tuned by using different Gs or varying the host/guest ratio, thus reaching a 96 % sRGB area.  相似文献   

7.
Simultaneously introducing covalent and supramolecular cross-links into one system to construct dually cross-linked networks, has been proved an effective approach to prepare high-performance materials. However, so far, features and advantages of dually cross-linked networks compared with those possessing individual covalent or supramolecular cross-linking points are rarely investigated. Herein, on the basis of comparison between supramolecular polymer network (SPN), covalent polymer network (CPN) and dually cross-linked polymer network (DPN), we reveal that the dual cross-linking strategy can endow the DPN with integrated advantages of CPN and SPN. Benefiting from the energy dissipative ability along with the dissociation of host–guest complexes, the DPN shows excellent toughness and ductility similar to the SPN. Meanwhile, the elasticity of covalent cross-links in the DPN could rise the structural stability to a level comparable to the CPN, exhibiting quick deformation recovery capacity. Moreover, the DPN has the strongest breaking stress and puncture resistance among the three, proving the unique property advantages of dual cross-linking method. These findings gained from our study further deepen the understanding of dynamic polymeric networks and facilitate the preparation of high-performance elastomeric materials.  相似文献   

8.
Superior artificial light-harvesting systems (ALHSs) require exceptional capacity in harvesting light and transferring energy. In this work, we report a novel strategy to build ALHSs with an unprecedented antenna effect (35.9 in solution and 90.4 in solid film). The ALHSs made use of a conjugated polymeric supramolecular network (CPSN), a crosslinked network obtained from the self-assembly of a pillar[5]arene-based conjugated polymeric host ( CPH ) and conjugated ditopic guests (Gs). The excellent performance of the CPSN could be attributed to the following factors: 1) The “molecular wire effect” of the conjugated polymeric structure, 2) aggregation-induced enhanced emission (AEE) moieties in the CPH backbone, and 3) high capacity of donor–acceptor energy transfer, and 4) crosslinked structures triggered by the host–guest binding between Gs and CPH . Moreover, the emission of the CPSN could be tuned by using different Gs or varying the host/guest ratio, thus reaching a 96 % sRGB area.  相似文献   

9.
Herein, we design and synthesize a novel all-carbon supramolecular polymer host (SPh) containing conjugated macrocycles interconnected by a linear poly(para-phenylene) backbone. Applying the supramolecular host and fullerene C60 as the guest, we successfully construct a supramolecular polymeric heterojunction (SPh⊃C60). This carbon structure offers a means to explore the convex–concave π–π interactions between SPh and C60. The produced SPh was characterized by gel permeation chromatography, mass spectrometry, FTIR, Raman spectroscopy, and other spectroscopies. The polymeric segment can be directly viewed using a scanning tunneling microscope. Femtosecond transient absorption and fluorescence up-conversion measurements revealed femtosecond (≪300 fs) electron transfer from photoexcited SPh to C60, followed by nanosecond charge recombination to produce the C60 triplet excited state. The potential applications of SPh⊃C60 in electron- and hole-transport devices were also investigated, revealing that C60 incorporation enhances the charge transport properties of SPh. These results expand the scope of the synthesis and application of supramolecular polymeric heterojunctions.

Herein, we design and synthesize a novel all-carbon supramolecular polymer host (SPh) containing conjugated macrocycles interconnected by a linear poly(para-phenylene) backbone.  相似文献   

10.
毛细管电泳柱及微流控芯片通道涂层的发展   总被引:2,自引:0,他引:2  
刘春叶  陈杰瑢 《色谱》2005,23(1):63-68
综述了用于毛细管电泳柱和微流控芯片通道的涂层材料和涂层技术的发展状况,以及涂层对分离效果和分离结果重现性的影响。将涂层材料按照动态和静态分类,静态涂层又分别按照均聚物、共聚物、杂环类等进行讨论;综述了交联反应法、溶胶-凝胶法、辐照法、化学沉积法等涂层的制备方法。对毛细管电泳柱和微流控芯片通道的改良具有一定的参考价值。  相似文献   

11.
The possibility of exploiting supramolecular architectures for the preparation of innovative mechanochromic devices has been extended by designing novel thienyl‐substituted 1,4‐bis(ethynyl)benzene dyes, which are characterized by a conjugated, rigid, rodlike core structure. This new family of chromophores was synthesized according to a simple two‐step sequential cross‐coupling reaction, and the optical properties were investigated in solution and in a polymeric matrix. To tune the mechanochromic performances in smart polymer materials, a virtual screening was set up that was able to select a derivative with optimal spectral features. The effective combination of experimental and computational investigations allowed us to spot those homologues with already potential anisotropic and aggregachromic features and characterized by the best spectral properties and luminescent response. The best candidate was synthesized and dispersed into a polyethylene matrix, indeed achieving an “in silico designed” mechanochromic material. Besides the specific applications of this novel material, the integration of computational and experimental techniques reported here defines an efficient protocol that can be applied to make a selection among similar dye candidates, which constitute the essential responsive part of such supramolecular devices.  相似文献   

12.
Hybrid raspberry‐like colloids (HRCs) were prepared by employing cucurbit[8]uril (CB[8]) as a supramolecular linker to assemble functional polymeric nanoparticles onto a silica core. The formed HRCs are photoresponsive and can be reversibly disassembled upon light irradiation. This facile supramolecular approach provides a platform for the synthesis of colloids with sophisticated structures and properties.  相似文献   

13.
Hydrophilic poly(ethylene glycol)-based monoliths were synthesized in the spin-tip format for high-throughput applications via pulsed electron beam irradiation. Monoliths with a homogeneous porous structure and a total porosity of 69% were obtained. The cross-linked polymeric structure was further mechanically stabilized via the incorporation of silica nanoparticles. Amino-functionalization of the monoliths was accomplished by a straightforward, water-based, one-step approach that entailed the electron-beam irradiation-induced grafting of poly(allylamine). The amine functionalized spin columns showed very low unspecific protein adsorption and were successfully applied as adsorbents in lectin affinity chromatography for the purification of ovalbumin. The novel columns also outperformed a commercially available system.  相似文献   

14.
The capillary walls of fused-silica capillary electrophoresis (CE) columns were modified with a thin film of polyaniline (PANI), providing open-tubular columns with a stable coating containing aromatic groups and amine functionalities. Fast and efficient separations were observed for small bioactive peptides under acidic conditions on PANI-coated columns. The mechanism of separation is based on hydrophobic interactions between the analytes and the polymeric matrix. Good reproducibility was observed from run-to-run. Due to the simple derivatization procedure, method flexibility, the uniformity of the coating and its stability, conjugated polymers could find practical application in capillary zone electrophoresis (CZE) separations.  相似文献   

15.
A series of discotic liquid crystals formed by simple hydrogen bonding between phloroglucinol core and alkoxystilbazole peripheral units was prepared. Nematic columnar and hexagonal columnar mesophases were observed depending on the length of alkyl chains around the aromatic core.  相似文献   

16.
pH‐gated ion channels in cell membranes play important roles in the cell's physiological activities. Many artificial nanochannels have been fabricated to mimic the natural phenomenon of pH‐gated ion transport. However, these nanochannels show pH sensitivity only within certain pH ranges. Wide‐range pH sensitivity has not yet been achieved. Herein, for the first time, we provide a versatile strategy to increase the pH‐sensitive range by using dual amphoteric nanochannels. In particular, amphoteric polymeric nanochannels with carboxyl groups derived from a block copolymer (BCP) precursor and nanochannels with hydroxyl groups made from anodic alumina oxide (AAO) were used. Due to a synergistic effect, the hybrid nanochannels exhibit nanofluidic diode properties with single rectification direction over a wide pH range. The novel strategy presented here is a scalable, low‐cost, and robust alternative for the construction of large‐area membranes for nanofluidic applications, such as the separation of biomolecules.  相似文献   

17.
The controlled self-assembly of multi-components in one system represents the capability integrating intermolecular interactions and functions of components and is believed the key procedure leading to multifunctional materials finally. In pursuing this goal, we used a double-chain cationic surfactant with a benzoic acid group at the end of one tail to encapsulate Keggin-type polyanion clusters via electrostatic interaction, obtaining uniform supramolecular hybrid reverse micelles, which served as hydrogen-bonding donors. Five pyridine derivatives containing conjugated and non-conjugated groups were chosen as hydrogen-bonding acceptors to bind with reverse micelles. Through mixing with these components according to chemical stoichiometry, the hybrid reverse micelle changed to a new self-assembly precursor through intermolecular hydrogen bonding. The as-prepared reverse micelles bearing conjugated pyridine groups exhibit supramolecular liquid crystal properties, which were characterized by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. The length and number of the alky chain in the pyridine derivatives, as well as the charges of polyoxometalates were also studied with regard to the liquid crystal structure. The synergistic effect of among three components was analyzed, and the liquid crystal properties could be conveniently adjusted through the modification of the hydrogen-bonding acceptor components.  相似文献   

18.
Molecular information expressed through molecular recognition events provides means for directing the spontaneous formation of supramolecular species from complementary components. It may allow the design and engineering of supramolecular materials, in particular of liquid crystalline and of polymeric nature. Thus, supramolecular mesophases have been obtained from molecular recognition-induced association of suitable subunits. The self-assembly of complementary ditopic components generates liquid crystalline “polymers” of supramolecular nature; it takes place by a progressive growth revealed by electron microscopy: from nuclei, to filaments, to tree-like species, to strings and fibers that present helicity induced by the chirality of the subunits. A rich variety of structures and properties may be expected to result from the blending of supramolecular chemistry with polymer chemistry and materials science.  相似文献   

19.
Recently, metal-coordinated orthogonal self-assembly has been used as a feasible and efficient method in the construction of polymeric materials, which can also provide supramolecular self-assembly complexes with different topologies. Herein, a cryptand with a rigid pyridyl group on the third arm derived from BMP32C10 was synthesized. Through coordination-driven self-assembly with a bidentate organoplatinum(II) acceptor or tetradentate Pd(BF4)2•4CH3CN, a di-cryptand complex and tetra-cryptand complex were prepared, respectively. Subsequently, through the addition of a di-paraquat guest, linear and cross-linked supramolecular polymers were constructed through orthogonal self-assembly, respectively. By comparing their proton nuclear magnetic resonance (1H NMR) and diffusion-ordered spectroscopy (DOSY) spectra, it was found that the degrees of polymerization were dependent not only on the concentrations of the monomers but also on the topologies of the supramolecular polymers.  相似文献   

20.
Some new examples of hydrogen-bonded 1,3-diacylaminobenzene mesogens are presented. This odd type of polymeric self-hydrogen bonded supramolecular association allows a nematic and/or a columnar order to be obtained. Such a mesogenic hydrogen-bonded arrangement (MHB) should be able to stabilize diverse mesomorphic molecular edifices such as layers, columns and tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号