首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three acrylate side-chain polymers in which the mesogenic moieties are based on the 4-n-alkoxyphenyl-4'-(4'-methylhexyloxy) benzoates have been characterized by differential scanning calorimetry, optical microscopy and X-ray diffraction. For shorter flexible spacers (n = 2) both smectic A and C* phases are observed thus making this polymer interesting for the fabrication of electro-optical devices based on ferroelectric properties (a smectic A phase is required for alignment purposes). For longer flexible spacers, (n = 6, 11) only the smectic A phase remains.  相似文献   

2.
ABSTRACT

A homologous series of new chiral liquid crystal compounds, MnBEB (n = 4–10), was prepared by covalently linking a chiral (–)-menthyl with biphenyl-benzoate via a dicarboxylic spacer of varying length and parity. A combination of analysis methods, such as FT-IR, 1H NMR spectra, differential scanning calorimetry (DSC), polarised optical microscopy (POM) and X-ray diffraction was carried out to systematically investigate their phase structures and phase transition behaviours. The length and parity of the flexible spacers has a profound influence on the Tm and Tc and a modest odd-even effect is observed for the chiral liquid crystal compounds MnBEB. Only compound M4BEB developed an N* phase with selectively reflection on heating and a blue phase on cooling process. In addition, increasing the length of the flexible spacers tends to narrow the temperature range of the N* phase and widen the smectic phase, moreover, the pitch becomes longer with the spacer increases.  相似文献   

3.
Abstract

Sidechain liquid-crystalline polymers were prepared by the derivatization of three poly(4-hydroxystyrene) fractions of different molecular weights (Mw = 1.0 × 104, 2.2 × 104 and 3.0 × 104). 4-Cyanoazobenzene and 4-cyanobiphenyl were incorporated as mesogenic groups with ether-linked methylene spacers of varying length. The polymers all exhibited a smectic A phase, with the exception of the propyl member of the cyanobiphenyl series for which no liquid-crystalline behavior was observed. For short spacers the thermal properties were insensitive to molecular weight changes in the backbone, whereas small but consistent differences in the transition temperatures and entropies were observed as the number of methylene groups in the spacer increased.  相似文献   

4.
A new type of β-diketone based side chain liquid crystalline polysiloxanes (DKLCP) with different length of flexible spacers and end groups have been synthesized by hydrosilation reaction. This is liquid crystal polymers (LCP) using coordinating β-diketone ligand as mesogens. The phase behaviour of DKLCP polymers was studied by differential scanning calorimetry and polarizing microscopy. X-ray diffraction investigations demonstrated that the polysiloxanes with sufficiently long flexible spacers were smectic liquid crystal polymers, while those with much shorter spacers were nematic ones.  相似文献   

5.
We prepared some taper-shaped liquid-crystalline trimers in which two phenylpyrimidine units and a 1,4-diphenyl-2,3-difluorobenzene unit are connected to 2,4-dihdroxy benzoic acid via flexible spacers. We then investigated their liquid-crystalline properties using polarised optical microscopy, differential scanning microscopy and X-ray diffraction. 6-[4–(5-Octylpyrimidin-2-yl)phenyloxy]hexyl 2-{7-{4-[4–(4-hexylphenyl)-2,3-difluorophenyl]phenyloxy}heptanoyloxy}-4-{6-[4–(5-octylpyrimidin-2-yl)phenyloxy]hexyloxy}benzoate (1) was found to exhibit a phase sequence of isotropic liquid – nematic – intercalated smectic A – intercalated anticlinic smectic C – modulated smectic C. The structure–property relation in the taper-shaped trimers reveals that the modulated phase is induced by competition between an intercalated structure stabilised by dipole–dipole interaction and a monolayer structure by packing entropy effects. Conformational change of compound 1 induced by intermolecular interactions plays an important role in the phase transition behaviour.  相似文献   

6.
When the flexible terminal substituent changes from butoxy to hexyloxy or longer, smectic C (SC) liquid crystalline phase was firstly reported to develop from a kind of mesogen‐jacketed liquid crystalline polymer (MJLCP) whose mesogenic side groups are unbalancedly bonded to the main chain without spacers. A series of MJLCPs, poly[4,4′‐bis(4‐alkoxyphenyl)‐2‐vinylbiphenyl(carboxide)] (nC2Vp, n is the number of the carbons in the alkoxy groups, n = 2, 4, 6, 8, 10, and 12) were designed and synthesized successfully via free radical polymerization. The molecular weights of the polymers were characterized with gel permeation chromatography, and the liquid crystalline properties were investigated by differential scanning calorimetry, polarized light microscopy experiments, and 1D, 2D wide‐angle X‐ray diffraction. Comparing with the butoxy analog, the polymer with unbalanced mesogenic core and shorter flexible substituents (n = 2, 4) keeps the same smectic A (SA) phase, but other polymers with longer terminal flexible substituents (n = 6, 8, 10, and 12) can develop into a well‐defined SC phase instead of SA phase. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 505–514, 2009  相似文献   

7.
A series of poly[ω‐(4′‐methoxy‐biphenyl‐4‐oxy)alkyl‐1‐glycidylether]s were synthesized by chemically modifying the corresponding poly(ω‐bromoalkyl‐1‐glycidylether)s with the sodium salt of 4‐hydroxy‐4′‐methoxybiphenyl. New high‐molecular‐weight side‐chain liquid‐crystalline polymers were obtained with excellent yields and almost quantitative degrees of modification. They were all insoluble in THF and other common solvents. Characterization by 13C NMR confirmed that all the polymers had the expected structure. The liquid crystalline behavior of the polymers was analyzed by DSC and polarized optical microscopy, and mesophase assignments were confirmed by X‐ray diffraction studies. Polymers that had alkyl spacers with n = 2 and 4 were smectic C, those that had spacers with n = 6 and 8 were nematic cybotactic, and those that had longer spacers (n = 10 and 12) were smectic C again. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5998–6006, 2005  相似文献   

8.
In this article, we report on the synthesis and thermotropic behaviour of methacrylic polymers containing 4′-(4-alkyloxyphenyl)azobenzene mesogens attached to the backbone through n-alkyloxy spacers of 6 or 10 methylene groups. Polymerisations were carried out via free radicals using azobisisobutyronitrile (AIBN) as initiator. Chemical structures of polymers and their precursors were characterised by 1H NMR spectroscopy. Thermogravimetric analysis showed that azopolymers are thermally stable up to temperatures around 300°C. The thermotropic liquid-crystalline (LC) behaviour was studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and X-ray diffraction (XRD). Results indicate that all synthesised mesogens, monomers and polymers developed two or more orthogonal LC phases in wide temperature ranges. Mesogens and monomers developed nematic and smectic phases, whereas polymers exhibited only smectic phase. In polymers, the arrangement of mesogens depends on the relative length of the spacer and the terminal flexible chain; two distinct structural models were proposed based on chemical interactions and steric constrains. The trans–cis photoisomerisation of monomers and polymers in solution was also studied. High cis-isomer contents (>80%) were reached in relative short irradiation times despite the steric constrains imposed by the polymer backbone.  相似文献   

9.
The synthesis, molecular structural characterisation and mesomorphic behaviour of lanthanidomesogens with the formula [LnL(LH)2 ][X]2 are reported. These mesogens were derived from ligands (LH- n ) formed by covalently linking the pro-mesogenic cholesterol segment with the N-(n-decyl)salicylaldimine core through either an even-parity (4-oxybutanoyloxy/6-oxyhexanoyloxy/8-oxyoctanoyloxy) or an odd-parity (5-oxypentano-yloxy) spacer. These ligands were designed based on the recently conceived concept of decoupling the anisometric segment from the metal-coordinating site by a flexible spacer to account for the stabilisation of nematic and/or smectic phases at lower temperatures. The even parity spacer ligands are polymesomorphic whereas the odd parity analogue exhibits only the chiral nematic phase. In contrast, the complexes display solely the smectic A phase indicating that the variation in the nature of lanthanide has no influence on the general phase behaviour of the complexes. The clearing temperatures of both the ligands and the complexes display an odd-even effect; the even members show relatively higher transition temperatures.  相似文献   

10.
A new series of symmetrical S-shaped oligomers 4,4?-bis(ω-2-(ω-[(bromophenyl)diazenyl]-alkoxy)phenoxy)hexylbiphenyl consisting of two different spacers (inner -(CH2)6- and outer -(CH2)n-) have been synthesised. Their physical, thermal and texture observation over various transition temperatures are reported. The outer spacers for these compounds vary from n = 4 to n = 9. The oligomers with even number of members exhibit monotropic phase in which the compound with n = 4 shows nematic (N) phase whilst those with members n = 6 and 8 exhibit N and smectic A (SmA) phases. However, the homologs with odd number of members display enantiotropic phase in which the compound with n = 5 exhibits N and smectic phases whereas the members with n = 7 and 9 are predominantly smectogenic. The temperature range of N phase for even-numbered member decreased with elongation of the outer spacer. The smectic phase stability among the members in the present series increases when the outer spacer n is increased from 5 to 8.  相似文献   

11.
Abstract

The thermal properties of 4-octyloxyphenyl 4-(4-R-3-nitrobenzoyloxy) benzo-ates (1) and 4-(4-octyloxybenzoyloxy)phenyl 4-R-3-nitrobenzoates (2) have been examined, where R = hydrogen, halogens, alkyl and alkoxy groups. The derivatives of compound 1 incorporating hydrogen, halogens, methoxy and nitro groups show a smectic A phase having a bilayer arrangement, and the others with a long alkoxy group show the SA phase with the monolayer arrangement. The derivatives of compound 2 incorporating halogens, and the nitro group show the SA phase with the monolayer arrangement. The alkoxy derivatives show a smectic C phase as well as the nematic phase. The nitro group at the lateral position tends to increase the ratio of the SA-N transition temperature to the N-I. The effect of the nitro group on the smectic properties has been discussed in terms of the structural and electrostatic nature of the nitro group.  相似文献   

12.
Abstract

The crucial role of the smectic A-nematic transitional order for the formation of the smectic A, B and G phases from an electrically deformed nematic phase of the liquid crystal 4-n-hexyloxy-benzylidene-4′-n-butylaniline (6O.4) with a typical smectic A-nematic first order transition and the formation of the smectic A and B phases from an electrically deformed nematic phase of the liquid crystal (4-n-butyloxy-benzylidene-4′-n-octylaniline (40.8) with a smectic A-nematic second order transition has been demonstrated. The nematic phase was deformed by an AC voltage of 2U,th 5U th and 10U th, where U th is the threshold voltage which causes the appearance of the Fréedericksz transition in the homeotropic nematic layer. The smectic textures have been observed on free cooling of the nematic phase or after the use of an oven. The smectic A phase of the liquid crystal 60.4 was observed with the formation of a clear smectic A-nematic phase boundary while the smectic A phase of the liquid crystal 40.8 has been formed from intermediate pretransitional stripes, observed by Cladis and Torza [1]. The homeotropic anchoring of the direction was crucial for the formation of the smectic phases of the liquid crystal 40.8 but not significant for the liquid crystal 60.4.  相似文献   

13.
Starting from commercial S- or R-3-bromo-2-methylpropanol, several new spacer diols were prepared. These spacers were polycondensed with the acid chloride of N-(4′-carboxyphenyl)trimellitimide. The resulting poly(ester-imide)s were characterized by elemental analyses, viscosity measurements, 1H-NMR spectroscopy, DSC- and WAXD-measurements and optical microscopy. The poly(ester-imide)s derived from chiral, aliphatic spacers form layer structures in the solid state, but no liquid crystalline phase. With nonsymmetrical, nonchiral semialiphatic spacers, poly(ester-imide)s were obtained, which form a smectic E or H phase in the solid state, a smectic-A or -C phase in the melt, and a nematic phase, when the spacer possesses an odd number of CH2 groups. The polycondensation of a chiral semialiphatic spacer yielded thermotropic poly(ester-imide)s with either S- or R-configuration. WAXD patterns measured with synchrotron radiation at various temperatures proved that a layer structure exists in the solid state (smectic-E* or H*) and a chiral smectic-A* or -C* phase plus a cholesteric phase in the melt. A 1 : 1 blend of the S- and R-polyesters was also studied, but did not show unusual features. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Abstract

The results of optical activity measurements on the smectic A* phase of 1-methylheptyl 4′-[(4-n-tetradecyloxyphenyl)proprioloyloxy]biphenyl-4-carboxylate (14P1M7) and the chiral nematic phase of a chiral–racemic mixture of S-4-(2-methylbutyl)phenyl 4-decyloxybenzoate (CE6) are shown to be extremely similar. This is in full agreement with the proposed model of the A* phase as a twistgrain-boundary (TGB) phase. In addition, new light scattering measurements using circularly polarized light in a back-scattering geometry yield information on the fluctuations in the isotropic phase. Unlike in chiral nematics where only one structural mode is affected, the data show a strong deviation from the normal temperature dependence near the isotropic–smectic A* transition for two structural modes. Possible reasons for this behaviour in highly chiral smectic liquid crystals are discussed.  相似文献   

15.
Abstract

Measurements of proton spin-lattice relaxation rates for the partial bilayer smectic A phase of 4-((4′-n-hexadecyloxybenzylidene)-amino) benzonitrile obtained at different Larmor frequencies and temperatures show that the essential relaxation mechanisms in the MHz frequency region are translational self-diffusion and local molecular reorientations similar to those in monolayer smectics. The values of the diffusion constant obtained from the fit of the theory to the experimental data show a range from 2.6 × 10?11 m2 s?1 at 95°C to 1.7 × 10?11 m2 s?1 at 75°C. A dynamic process specific to the partial bilayer smectic A phase seems to influence relaxation below 10 MHz. It can be associated either with the dimerization of molecules in the layers or with a higher value of the low cut-off frequency of order director fluctuations than that found in monolayer smectic A phases.  相似文献   

16.
A set of poly[ω‐(4′‐cyano‐4‐biphenyloxy)alkyl‐1‐glycidylether]s were synthesized by the chemical modification of the corresponding poly(ω‐bromoalkyl‐1‐glycidylether)s with the sodium salt of 4‐cyano‐4′‐hydroxybiphenyl. New high‐molecular‐weight side‐chain liquid‐crystalline polymers were obtained with excellent yield and almost quantitative degree of modification. All side‐chain liquid‐crystalline polymers were rubbers soluble in tetrahydrofuran. The characterization by 1H and 13C NMR revealed no changes in the regioregular isotactic microstructure of the starting polymer and the absence of undesirable side reactions such as deshydrobromination. The liquid crystalline behavior was analyzed by DSC and polarized optical microscopy, and mesophase assignments were confirmed by X‐ray diffraction. Polymers that had alkyl spacers with n = 2 and 4 were nematic, those that had spacers with n = 6 and 8 were nematic cybotactic, and those that had longer spacers (n = 10 and 12) were smectic C and showed some crystallization of the side alkyl chains. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3002–3012, 2004  相似文献   

17.
Abstract

The first eleven members of the homologous series of α-(4-cyanobiphenyl-4'-oxy)-ω-(4-n-alkylanilinebenzylidene-4'-oxy)hexanes have been synthesized. The compounds are all enantiotropic nematogens and, with the exception of the heptyl, octyl and nonyl homologues, exhibit smectic phases. The thermal stability of the smectic A phase initially increases with the length of the terminal alkyl chain, passes through a maximum and then falls dramatically before disappearing. The smectic A phase subsequently reappears with the decyl homologue which has the highest smectic A-nematic transition temperature of the series. In order to understand this unusual behavior we have determined the entropies of transition for the compounds and we have measured the layer spacing of the smectic A phase for three of them.  相似文献   

18.
Unit cell parameters calculated from X-ray powder diffraction data are presented for the crystalline phase of a liquid crystal 4-butyloxyphenyl 4′-decyloxybenzoate: a = 23.098 (4) Å, b = 5.974 (6) Å, c = 12.357 (10) Å, β = 121.5283 (788)°, unit-cell volume V = 1453.56 Å3. Temperature dependent X-ray diffraction data confirmed the existence of smectic A and smectic C mesophases and a more ordered, tilted crystalline smectic phase. Possibility of existence of previously reported smectic B phase as well as another crystalline phase was refuted.  相似文献   

19.
Abstract

A novel system of non-symmetric dimers containing 4-n-alkyloxy-substituted cinnamic acid and cyanobiphenyl groups has been studied. Two series were prepared: in one the flexible spacer was varied in length while the spacer was fixed. The spacer length has a profound influence on the nematic-isotropic transition temperature of these materials and a large odd-even effect is observed for the series. The terminal chain also plays a significant role in determining the liquid crystal phase behaviour: a smectic A phase is exhibited for the ethyl and propyl homologues, in addition to a nematic phase; this smectic phase vanishes for intermediate chain lengths but then reappears for the nonyl and decyl members of the series. X-ray diffraction has revealed the structure of the smectic A phase for the ethyl homologue to be intercalated, whereas that for the decyl compound is interdigitated. The existence of the intercalated smectic A phase has previously been explained in terms of a charge-transfer interaction between unlike mesogenic groups. However, for the non-symmetric liquid crystal dimers described here this specific interaction appears unlikely and we discuss, therefore, other possible mechanisms for the formation of intercalated smectic phases.  相似文献   

20.
Abstract

A new class of diamine spacers was synthesized from α,ω-diaminoalkanes and 4-nitrophthalic anhydride. The resulting α,ω-bis(4-aminophthalimido)alkanes were polycondensed with terephthaloylchloride, 2-phenylthioterephthaloylchloride, naphthalene-2,6-dicarboxylic acid dichloride, and 4,4′-biphenyl dicarboxylic acid dichloride. Most poly(amide-imide)s proved to be semicrystalline, forming a smectic layer structure in the solid state. Yet only the poly(amide-imide)s derived from 4,4′-biphenyl dicarboxylic acid are thermotropic and form a smectic and a nematic LC-phase. Due to the high temperatures employed, the reversibility of the phase transitions suffers from thermal degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号