首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flammability behavior of the system polyamide 6 (PA 6) + melamine cyanurate (MC) with or without organically modified layered montmorillonite (OMMT) or sodium montmorillonite (Na+MMT) was studied. The high degree of flame retardancy (FR) obtained with 13 wt% MC is maintained upon adding up to 0.2 wt% OMMT or Na+MMT. Increase mass % of OMMT is antagonistic to the MC effect. The rate of dripping decreases while the size and mass of drops in the UL‐94 tests increases with increasing wt% OMMT indicating increase in viscosity of the melt and decrease in the rate of sublimation of melamine. Addition of poly vinyl pyrrolidone (PVP) decreases the viscosity and partially restores the FR rating. Na+MMT does not increase the viscosity and the FR ratings are partially preserved. The peak of heat release rate (PHRR) in the cone calorimeter decreases with increased loading of OMMT. Addition of Na+MMT or PVP has little influence on the PHRR. The time of ignition decreases with increase in OMMT, but is not affected when Na+MMT is used. This is explained by the low thermal conductivity of the clay containing surface layer of samples during pyrolysis and combustion. Mechanistic considerations are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The relative complex dielectric function, electric modulus, alternating current (ac) electrical conductivity and complex impedance spectra of poly(ethylene oxide) (PEO)–montmorillonite (MMT) clay aqueous colloidal suspension (hydrocolloids) were investigated over the frequency range 20 Hz to 1 MHz at 27 °C. The relaxation time corresponding to electrode polarisation and Maxwell–Wagner polarisation processes (ionic conduction) were determined from these plots. The direct current (dc) electrical conductivity is evaluated from the fitting of real part ac conductivity data to the Jonscher power law. A correlation of increase in dc conductivity and decrease of ionic conduction relaxation time with increase of clay concentration is discussed considering intercalation of PEO chains and its dynamics and exfoliation of MMT clay nanoplatelets in these complex fluids. The formation of PEO–MMT clay supramolecular lamellar nanostructures with increase in continuity of lamellae arrangements were explored for the structural conformation of these nanocomposite novel materials.  相似文献   

3.
Nanocomposite membranes based on polyelectrolyte complex (PEC) of chitosan/phosphotungstic acid (PWA) and different types of montmorillonite (MMT) were prepared as alternative membranes to Nafion for direct methanol fuel cell (DMFC) applications. Fourier transform infrared spectroscopy (FTIR) revealed an electrostatically fixed PWA within the PEC membranes, which avoids a decrease in proton conductivity at practical condition. Various amounts of pristine as well as organically modified MMT (OMMT) (MMT: Cloisite Na, OMMT: Cloisite 15A, and Cloisite 30B) were introduced to the PEC membranes to decrease in methanol permeability and, thus, enhance efficiency and power density of the cells. X-ray diffraction patterns of the nanocomposite membranes proved that MMT (or OMMT) layers were exfoliated in the membranes at loading weights of lower than 3 wt.%. Moreover, the proton conductivity and the methanol permeability as well as the water uptake behavior of the manufactured nanocomposite membranes were studied. According to the selectivity parameter, ratio of proton conductivity to methanol permeability, the PEC/2 wt.% MMT 30B was identified as the optimum composition. The DMFC performance tests were carried out at 70 °C and 5 M methanol feed and the optimum membrane showed higher maximum power density as well as acceptable durability compared to Nafion 117. The obtained results indicated that owing to the relatively high selectivity and power density, the optimum nanocomposite membrane could be considered as a promising polyelectrolyte membrane (PEM) for DMFC applications.  相似文献   

4.
In our previous report, poly(methyl vinyl ether-alt-maleic anhydride) grafted CB (GCB) with stable dispersion in water was successfully prepared. In the present study, waterborne polyurethane (WPU) nanocomposites including GCB and attapulgite (ATT) were prepared by liquid mixing method. Anionically charged GCB nanoparticles were heterocoagulated on the surface of cationically charged ATT nanorods at low pH value and improved the stabilization of ATT nanorods in water as a dispersing aid. The microstructure development in matrix that depended on various weight ratios of the nanoparticles ultimately influenced the electrical conductivity and mechanical properties of WPU nanocomposites. Composites containing equal concentrations of GCB and ATT showed reduced electrical conductivity, but significant increase in storage modulus. When the weight ratio of GCB to ATT was 5:1, both electrical conductivity and storage modulus of composite were improved simultaneously. The percolation threshold of composites containing a 5:1 (w/w) GCB/ATT ratio was lower than that of composites with GCB alone. The proposed mechanism for the effect of GCB and ATT on electrical or mechanical behaviors in composite was discussed in details. The clear evidence of microstructure development was also observed by transmission electron microscope.  相似文献   

5.
Composite polymer electrolytes based on poly(ethylene oxide)-polysiloxane/l-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide/organomontmorillonite(PEO-PDMS/1L/OMMT) were prepared and characterized.Addition of both an ionic liquid and OMMT to the polymer base of PEO-PDMS resulted in an increase in ionic conductivity.At room temperature,the ionic conductivity of sample PPB100-OMMT4 was 2.19×10~3 S/cm.The composite polymer electrolyte also exhibited high thermal and electrochemical stability and may potentially be applied in lithium batteries.  相似文献   

6.
Photoluminescence (PL) of a heterocomposite, consisting of the nematic liquid crystal (LC) 4-pentyl-4´-cyanobiphenyl (5CB) and anisometric nanoparticles of montmorillonite (MMT) clay, modified by cetyltrimethylammonium bromide (CTAB) has been investigated at 4.2 and 300 K. The incorporation of this organoclay (B4) to 5CB decreases the emission intensity by 7–8 times due to efficient resonant quenching of the exciting energy by the organoclay. The spectrum shifts to a long-wave region, with this effect being considerably larger at low temperatures. Graphical separation of complex bands, corresponding to the bulk 5CB and 5СВ?+?В4 heterosystem at both temperatures revealed that the presence of the organoclay resulted in a significant growth of LC dimer quantity, shifting spectra towards longer wavelengths. Changes in the 5CB luminescence under organoclay influence can be explained by quite strong interphase interactions specified earlier by infrared spectroscopy between the MMT surface and LC, and by a realisation of more flat conformations of 5CB molecules. Confinement effects prevent full crystallisation of 5CB in the 5CB?+?B4 composite, and LC dimer structures located in the organoclay near-surface layers on the outer surface of the nanoparticles and inside its galleries remain in a larger amount, at low temperature, when compared to bulk 5CB. The remaining LC crystallises and photoluminescence from the 5CB monomers becomes intense.  相似文献   

7.
Carbon fillers including multi-walled carbon nanotubes (MWCNTs), carbon black (CB) and graphite were introduced in a cyanate ester (CE) resin, respectively. The effects of the fillers on the electrical and thermal conductivity of the resin were measured and analyzed based on the microscopic observations. MWCNTs, CB and graphite exhibited percolation threshold at 0.1 wt%, 0.5 wt% and 10 wt%, respectively. The maximal electrical conductivity of the composites was 1.08 S/cm, 9.94 × 10−3 S/cm and 1.70 × 10−5 S/cm. MWCNTs showed the best enhancement on the electrical conductivity. The thermal behavior of the composites was analyzed by calorimetry method. Incorporation of MWCNTs, CB and graphite increased the thermal conductivity of CE resin by 90%, 15% and 92%, respectively. Theoretical models were introduced to correlate the thermal conductivity of the CE/MWCNTs composite. The interfacial thermal resistance between CE resin and MWCNTs was 8 × 10−8 m2K/W and the straightness ratio was 0.2. The MWCNTs were seriously entangled and agglomerated. Simulation results revealed that thermal conductivity of the CE/MWCNTs composites can be substantially elevated by increasing the straightness ratio and/or filler content of MWCNTs.  相似文献   

8.
Stability of aqueous suspensions of multiwalled carbon nanotubes (MWNTs) and their percolation behavior are investigated. Nanotubes of aqueous suspensions show a strong tendency to aggregation and networking into electroconductive clusters. The percolation threshold of the electrical conductivity is rather low and of order phi approximately 0.01 (where phi is the volume fraction), which can be explained by the high aspect ratio of MWNTs. Strong influence of the nonionic surfactant Triton X-305 on the colloidal stability of aqueous suspensions of MWNTs is observed. Addition of surfactant exerts a stabilizing effect at surfactant concentration C(s) proportional to the weight concentration C of MWNTs, C(s) approximately C mol/dm3. The transient behavior of electrical conductivity in the aqueous suspensions is explained by fractal aggregation processes. The fractal dimension is shown to be sensitive to the surfactant concentration C(s).  相似文献   

9.
This work investigates the dispersion of carbon black (CB) aggregates into various polymeric matrices to increase electric conductivity. The effect of matrix viscosity on CB morphology and, consequently, on the blend conductivity was thoroughly addressed. The electric conductivity increases from 10-9 to 10-4 when less than 3% CB aggregates were dispersed into the PDMS liquid of various viscosities. The CB threshold loading was found to increase from 1% to 3% as the viscosity rose from 10 cp to 60 000 cp. This finding shows that an ideal loading with CB aggregates is far below that (generally 15%) of a typical pelletized CB loading. Moreover, the microscope and RV tests reveal that CB aggregates diffuse and form an agglomerate-network when the conductivity threshold is reached in a low-viscosity matrix. However, a CB aggregate-network was observed when the threshold value was attained in a high-viscosity matrix. These two mechanisms can be distinguished at approximately 1000 cp. Finally, experimental observation shows that the increase of viscosity during curing does not influence the conductivity of the composite while the CB aggregates dispersed in a thermoset matrix. The minimum viscosity during curing, however, was found to be critical to CB dispersion morphology and, consequently, to ultimate electric conductivity.  相似文献   

10.
The poly(lactic acid) (PLA)/montmorillonite (MMT) composites were prepared by melt blending in an internal mixer. The effect of MMT and organically modified MMT (OMMT) addition on crystallization and mechanical preferences has been studied. The DSC results show that the crystallization ability of PLA is improved by MMT or OMMT. The addition of MMT and OMMT increase the crystallinity of PLA from 27.3 to 32.8%, and the cold crystallization temperature (TCC) of PLA decreases from 93.1 to 88.9°C with the MMT. However, the nucleating effect of MMT is better than that of OMMT due to the velvety surface resulted from the organic modification. The average size of the spherulites in PLA/MMT is smaller than that in PLA/OMMT. The addition of MMT or OMMT increases the tensile strength of PLA from 29.6 to 34.7 MPa and decrease the elongation at break of PLA. The modulus of PLA composites is enhanced rapidly from 338 to 660 MPa by the addition of MMT.  相似文献   

11.
高抗冲聚苯乙烯/蒙脱土复合材料的阻燃性研究   总被引:11,自引:0,他引:11  
用经十六烷基三甲基溴化铵有机化改性的蒙脱土 (OMMT)与高抗冲聚苯乙烯 (HIPS)通过熔融插层法制备了HIPS OMMT复合材料 ,用X ray衍射技术对材料结构进行了表征 ,发现钠基蒙脱土 (Na+ MMT)和有机蒙脱土的层间距分别为 1 5 1nm和 2 18nm ,HIPS OMMT(5phr)复合材料中蒙脱土的层间距因聚合物大分子的插入扩大为 3 4 4nm ;而HIPS与Na+ MMT形成的复合材料的层间距与Na+ MMT的层间距相比却没有变化 ,表明未有机化处理土没有形成插层结构 .锥形量热仪的研究结果表明HIPS OMMT复合材料的热释放速率、质量损失速率以及生烟速率等燃烧特性参数均显著降低 ,具有较明显的阻燃性和抑烟性 ,而HIPS Na+ MMT非插层型复合材料只有在Na+ MMT很高填充量下 (>2 0phr)才有一定阻燃效果 .比较了铵盐对HIPS阻燃性的影响 ,结果表明铵盐自身的阻燃作用很小 ,主要是插层复合结构起阻燃作用 .  相似文献   

12.
The morphology, microhardness, and electrical properties of composites consisting of conductive polypyrrole (PPy) dispersed into a nonconductive polypropylene matrix (PP) as pure component or in form of a sodium montmorillonite/PPy (MMT/PPy) composite have been studied. For comparison, also PP/MMT composites were studied. All types of composites were processed by compression molding or by melt mixing followed by compression molding into plates, which were used for characterization. Scanning electron microscopy and transmission electron microscopy was used to examine the morphology of the prepared materials. The investigation of electrical and dielectric properties was done by dielectric relaxation spectroscopy in a wide frequency range and was related to the composite composition and processing method. The analysis of the conductivity as a function of temperature indicated that the charge transfer mechanism could be described by the variable range hopping model in three dimensions. The microhardness of PP/MMT/PPy composites with different content of MMT or PPy was determined and the creep rate has been estimated. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 407–423, 2009  相似文献   

13.
The electrical conductivity and impact strength of polypropylene(PP)/EPDM/carbon black ternary composites were investigated in this paper. Two processing methods were employed to prepare these ternary composites. One was called one‐step processing method, in which the elastomer and the filler directly melt blended with PP matrix. Another one was called two‐step processing method, in which the elastomer and the filler were mixed first, and then melt blended with pure PP. To get an optimal phase morphology that favors the electrical conductivity and impact strength, controlling the distribution of CB in PP/EPDM blend was a crucial factor. Thus the interfacial tension and the work of adhesion were first calculated based on the measurement of contact angle, and the results showed that CB tended to be accumulated around EPDM phases to form filler‐network structure. Expectably, the filler‐network structure was observed in PP/EPDM/CB(80/20/3) composite prepared by two‐step processing method. The formation of this filler‐network structure decreased the percolation threshold of CB particles in polymer matrix, and the electrical conductivity as well as Izod impact strength of the composite increased dramatically. This work provided a new way to prepare polymer composites with both improved conductivity and impact strength. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The effects of the modification of natural layered montmorillonite (MMT) clay by cetyltrimethylammonium bromide (CTAB) cations on the structure and optical properties of the composite material based on this mineral (4.5%mass) and a nematic liquid crystal (LC), 4-pentyl-4'-cyanobiphenyl (5CB), have been investigated. As shown by small-angle X-ray diffraction and infrared (IR) spectroscopy experiments, this modification results in a significant expansion of the interplane spaces in the MMT nanoparticles and a considerable growth of their surface affinity to the 5CB molecules, which allows the LC molecules to penetrate into the MMT galleries and additionally expand these galleries. According to IR studies, this heterosystem possesses van der Waals interactions between its components on the phase separation boundary and, as a result, orientation alignment of the molecules in the near-surface layers occurs. These interactions specify the electro-optical properties of the composite. When an electric field is applied to a system, the light transmittance of the material increases due to the induced orientation of the LC dimers. This LC ordering remains even after the voltage is shut off, i.e. the system shows an electro-optical memory effect.  相似文献   

15.
Investigations of montmorillonite (MMT) clay mineral modification effects on electro‐optical properties of nanocomposites, based on the nematic liquid crystal 4‐pentyl‐4′‐cyanobiphenyl (5CB) and MMT have been carried out. Only the composite with MMT modified by an organic surface‐active substance, dioctadecyldimethylammonium chloride, has been shown to manifest electro‐optical memory effect and contrast. A polar dopant (acetone), added to the mixture, significantly increases composite homogeneity. Results of IR spectroscopy measurements lead to the conclusion, that there is a mutual influence of components on each other in organoclay systems, which appears as an alignment of near‐surface layers of both the organic and inorganic components of the composite. Due to such interactions these systems show electro‐optical contrast and memory effect. A composite with organophobic Na‐MMT does not show these electro‐optical properties, due to the absence of component interactions, as shown by IR spectroscopic data.  相似文献   

16.
Investigations of montmorillonite (MMT) clay mineral modification effects on electro-optical properties of nanocomposites, based on the nematic liquid crystal 4-pentyl-4'-cyanobiphenyl (5CB) and MMT have been carried out. Only the composite with MMT modified by an organic surface-active substance, dioctadecyldimethylammonium chloride, has been shown to manifest electro-optical memory effect and contrast. A polar dopant (acetone), added to the mixture, significantly increases composite homogeneity. Results of IR spectroscopy measurements lead to the conclusion, that there is a mutual influence of components on each other in organoclay systems, which appears as an alignment of near-surface layers of both the organic and inorganic components of the composite. Due to such interactions these systems show electro-optical contrast and memory effect. A composite with organophobic Na-MMT does not show these electro-optical properties, due to the absence of component interactions, as shown by IR spectroscopic data.  相似文献   

17.
The electrical conductivity of composites of exfoliated graphite nanoplatelets (GNPs), including bromine‐doped GNP, and conjugated polyacrylonitrile has been investigated. The focal point is the dual nature of the graphite nanoparticles, which exhibit both intrinsic electrical conductivity and doping capability of semi‐conductive polymers such as conjugated polyacrylonitrile to form charge‐transfer complexes. The conductivity is particularly enhanced in conjugated polyacrylonitrile composites (e.g., with 6 wt.‐% graphite nanoplatelets) where the value rises from 1 × 10−10 to 2 × 10−3 S · cm−1, which reflects jointly the conductivity of the doped semi‐conductive polymer together with the percolation‐based conductivity of the particles.

  相似文献   


18.
Nanofibers of the composite of pullulan (PULL), poly(vinyl alcohol) (PVA), and montmorillonite clay (MMT) were prepared using electrospinning method in aqueous solutions. Pullulan is an interesting natural polymer for many of its merits and good properties. Because of biocompatibility and non-toxicity of PVA, it could be used in numerous fields. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA) were done to characterize the PULL/PVA/MMT nanofibers morphology and properties. XRD patterns and FTIR data demonstrated that there were good interactions between PULL and PVA caused by possibly hydrogen bonds. Moreover, XRD data and TEM images indicated that intercalated and exfoliated MMT nanoplatelets can be obtained within the PULL/PVA/MMT nanofibers depending on the PULL/PVA blend ratios. Furthermore, the thermal stability and mechanical property (tensile strength) of PULL/PVA/MMT nanofibers could be enhanced more by exfoliated MMT nanoplatelets than intercalated structures of that nanoplatelets.  相似文献   

19.
In the present work effect of 90 MeV O7+ ions with five different fluences on poly(ethylene oxide) (PEO)/Na+-montmorillonite (MMT) nanocomposites has been investigated. PEO/MMT nanocomposites were synthesized by solution intercalation technique. With the increase in irradiation fluence, gallery spacing of MMT increases in the composite and an exfoliated nanostructure is obtained at the fluence of 5?×?1012 ions/cm2 as revealed by X-ray diffraction results. Highest room temperature ionic conductivity of 4.2?×?10?6?S?cm?1 was found for the fluence 5?×?1012 ions/cm2, while the conductivity for unirradiated polymer electrolyte was found to be 7.5?×?10-8?S?cm?1. The increase in intercalation of PEO chains inside the galleries of MMT results in the increase in interaction between Na+ cation and oxygen heteroatom leading to the increase in ionic conductivity of the composites. Surface morphology and interactions among the various constituents in the nanocomposites at different fluence have been examined by scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. The appearance of peak for each fluence in the loss tangent suggests the presence of relaxing dipoles in the polymer nanocomposite electrolyte films. With the increase in ion fluence the peak shifts towards higher frequency side, suggesting decrease in the relaxation time.  相似文献   

20.
Three systems of FR treatments of polyamide 6 with conventional flame retarding additives in the absence and in the presence of nanoparticles are discussed: I. ammonium sulfamate (AS) and dipentaerythritol (Di) II. melamine cyanurate (MC) III. pentabromobenzyl acrylate in the monomeric (PMA) and the polymeric (PPA) form. Depending on the concentration of the nanoparticles; synergism, antagonism, and cooperation in flame retardancy as well as in mechanical properties are observed. Cooperation between the OMMT in the concentration range of 0.5-1.0 wt% and the FR in all three systems is observed. The decrease in PHRR (ΔPHRR) is different for the three systems. In system III the brominated FR behaves similarly to OMMT with respect to ΔPHRR. The interaction between the molten polymeric matrix and the nanoparticles increases the viscosity in all three systems, which slows down the supply of the flame retarding moieties to the flame and lowers the FR rating, as measured by the UL-94 and OI tests. A new approach for assessing the viscosity of the pyrolyzing nanocomposite is presented by determining the size and mass of the drops formed during the UL-94 test. Dispersion of the nanoparticles in the polymer decreases the HRR and MRR and decreases the UL-94, OI ratings, and the mechanical properties, as evidenced by the different behavior of OMMT and Na+MMT. The time of ignition decreases markedly by the addition of the nanoparticles, due to the low thermal conductivity and heat transfer of the protective barrier on the surface of the pyrolyzing nanocomposite in the pre-ignition phase. A possibility of restoring the high FR rating in the presence of higher concentrations of nanoparticles is indicated. The significance of the results obtained for the future of the use of nanoparticles in FR is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号