首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photo-driven LC cell was assembled by sandwiching the liquid crystal material between two quartz or ITO plates covered with a 'command layer', which was fabricated from azobenzene-grafted ladder-like polysilsesquioxanes. The improved response sensitivity of the photo-driven cell, which means a lower threshold driving UV light intensity and a faster risetime, was achieved in two ways: pre-rubbing of the command surface and application of an assisting critical in-plane mode electric field. The response behaviour of the photo-driven cell was measured in situ and data were collected by computer. The results show that the risetime (4 s) under a weak UV intensity of 0.5 mWcm -2 is shorter than previously reported (several tens of seconds) under a greater UV intensity of 3-5 mWcm -2. The improved photo-driven LC cell holds out promise of potential applications in photo-addressing and photo-recording.  相似文献   

2.
Fringe-field switching (FFS) liquid crystal (LC) mode is mainly used for high-end LC displays. At present, an LC with positive dielectric anisotropy is utilised, although light efficiency of the device in a white state is not maximised due to generation of tilt angle near the edge of electrodes along the field direction. In order to overcome the demerit, an LC with negative dielectric anisotropy has been challenged. In this article, FFS mode, which shows a high light efficiency and a low operating voltage, is investigated with the utilisation of fringe in-plane electric field. The optimised device shows improved electro-optic characteristics in comparison with not only conventional LC modes, but also previously proposed FFS device using a positive type of LC.  相似文献   

3.
A periodic surface structure was prepared on a pre-rubbed polyimide (PI) film surface with a pulsed UV laser polarized perpendicular to the rubbing direction. The experimental results demonstrate that the rubbing-induced molecular anisotropic orientation was relaxed by the pulsed laser irradiation, and the laser induced molecular orientation was perpendicular to the line of the laser-induced periodic structure. The dichroism of the anisotropy of molecular orientation increased with the increase of laser energy. Since the direction of the laser-induced molecular anisotropy was perpendicular to the surface groove direction of the pre-rubbed PI surface, the effects of surface microgroove and anisotropic molecular orientation of the PI chain on liquid crystal (LC) alignment can be distinguished from each other. LC alignment was investigated by evaluating the anchoring energy of the PI surface, which was calculated according to Berreman's theory using the twist angle of the LC in the cells. The experimental results demonstrate that the exact alignment direction of the LC molecules is determined by the relative strength of both factors.  相似文献   

4.
ABSTRACT

Liquid crystal displays (LCDs) for vehicle displays should exhibit a fast response time in wide temperature range and wide-viewing angle in horizontal and downward directions without grey-scale inversion but limited brightness in the upward direction because the display images can be reproduced in the front window glass of a vehicle, affecting driver’s front visibility. Currently, fringe-field switching (FFS) liquid crystal device is widely commercialised for high resolution and wide-viewing-angle LCD; however, it needs to improve response times and limit the display brightness in the upward direction. As a solution, we propose a homogeneously aligned liquid crystal device in which liquid crystal director does tilt as well as twist deformation in a confined area by both vertical- and fringe-electric fields, exhibiting about two times faster decay response time than that of conventional FFS mode with suppressed luminance in the upward direction. The proposed liquid crystal device can be applied to LCDs for vehicle displays.  相似文献   

5.
We propose a novel method to fabricate a uniaxially homogeneous alignment of liquid crystal (LC) molecules without using a conventional alignment layer such as polyimide film. The method produces the polymer alignment layer (PAL) by polymerisation of the monomer including in the LC layer above the TNI of the LC material. The fringe-field switching (FFS) mode LC cell with the PAL (FFS-PAL-LC cell) produced from the monomer 4,4?-di-mehacryloyl-oxy chalcone (4,4?-DMOCh) exhibited enough level of alignment state and electro-optical property compared with the FFS-LC cell having the conventional polyimide-type alignment layer. We can expect that the FFS-PAL-LC cell is useful for next-generation displays such as flexible liquid crystal displays (LCDs) because the method does not need high-temperature process of over 200°C.  相似文献   

6.
We have studied cell gap-dependent driving voltage characteristics in a homogeneously aligned nematic liquid crystal (LC) cell driven by a fringe electric field, termed the fringe field switching (FFS) mode. The results show that for the FFS mode using a LC with positive dielectric anisotropy, the operating voltage decreases as the cell gap decreases, whereas it increases with a decreasing cell gap when using a LC with negative dielectric anisotropy. The difference between LCs is explained by simulation and experiment.  相似文献   

7.
We have studied cell gap-dependent driving voltage characteristics in a homogeneously aligned nematic liquid crystal (LC) cell driven by a fringe electric field, termed the fringe field switching (FFS) mode. The results show that for the FFS mode using a LC with positive dielectric anisotropy, the operating voltage decreases as the cell gap decreases, whereas it increases with a decreasing cell gap when using a LC with negative dielectric anisotropy. The difference between LCs is explained by simulation and experiment.  相似文献   

8.
Ren H  Xu S  Wu ST 《Lab on a chip》2011,11(20):3426-3430
Based on dielectrophoretic effect, we report a novel approach which can extensively spread a liquid crystal (LC) interface. With interdigitated striped electrodes, the droplets can be stretched along the striped electrode direction; while with zigzag interdigitated electrodes, the droplets can be further stretched sidewise. In our demonstration, the occupied area of a 1.9-mm-aperture LC droplet doped with 1.2 wt% black dye could be expanded over ~3.5× at 78 V(rms). The spreading and recovering times were measured to be ~0.39 s and ~0.75 s, respectively. The slower response time confirms the extreme expanding of the LC surface. The contrast ratio is over ~120?:?1 in transmissive mode. Color light switch was also demonstrated by spreading colored-dye doped LC droplets. The mechanical stability of the device was also evaluated. Liquid devices based on this cell structure have the advantages of good stability, simple operation and low power consumption. This work opens a new gateway for voltage controllable, polarization-insensitive, and broadband liquid photonic devices which may find numerous applications in switchable windows, variable optical attenuators, and displays.  相似文献   

9.
Size- and aggregation-controlled dispersion of thin multiwalled carbon nanotube (t-MWCNT) in negative dielectric anisotropic liquid crystal (LC) material exhibits remarkable improvement in electro-optic response time in vertically aligned LC cells. The physical properties such as birefringence, dielectric anisotropy and clearing temperature of nanotube dispersed LC material appear to be almost invariant to that of pristine LC. Nevertheless, the response time shows noticeable improvement, especially in decaying time associated with transition from maximum to minimum transmission, hence important for faster switching LC devices. The effect is attributed to that vertically aligned t-MWCNTs along the field direction play role of vertical alignment layer between LCs, consequently resulting in increased bend elastic constant of LCs.  相似文献   

10.
We propose a novel method to fabricate a vertical alignment (VA) of liquid crystal (LC) molecules without using a conventional alignment layer such as polyimide film. The method produces the vertical alignment polymer layer (VAPL) by polymerisation of a monomer or mixed monomers including in the LC layer above TNI of the LC material. The VA mode LC cell with the VAPL (VAPL-LC cell) produced from the mixed monomers of acrylic acid 4-(4?-octyloxy-biphenyl-4-yloxy)-butyl ester and 1,2-bis-(4-methacryloxy-phenyl)-2,2-dimethoxy-ethane-1-one exhibited enough level of alignment state and electro-optical property with high voltage holding ratio. We can expect that the VAPL-LC cell is useful for next-generation displays such as flexible liquid crystal displays because the method does not need the process including high temperature over 200°C.  相似文献   

11.
In order to study the droplet pattern and electro-optic (EO) behaviour of polymer dispersed liquid crystal (PDLC) with the addition of dye, dichroic polymer dispersed liquid crystal (DPDLC) films were prepared using a nematic liquid crystal (NLC), photo-curable polymer (NOA 65) and anthraquinone blue dichroic dye (B2), in equal ratio (1:1) of polymer and liquid crystal (LC) by polymerisation induced phase separation (PIPS) technique. Dichroic dye was taken in different concentration (wt./wt. ratio) as 0.0625%, 0.125%, 0.25%, 0.5% and 1% of the LC mixture in DPDLC films. Initially, in an open circuit when there is no proviso for external electric field (0 V), LC droplets in polymer matrix exhibited bipolar pattern, though on closing the circuit with the increase of electric field pattern of droplets starts changing, LC molecules align along the direction of applied electric field and aligned completely relatively at higher field (30 V), which illustrate vertical radial pattern. Further, results show that the DPDLC film containing 0.0625% dye concentration with consistent average droplet size ~4.30 μm, exhibits the best transmission at lower operating voltage.  相似文献   

12.
In this paper, we discuss the viewing angle properties of single-domain fringe-field-switching (FFS) liquid crystal (LC) mode aligned by using parallel-rubbed polyimide surfaces. Due to the reduced initial tilting angle distribution in the bulk LC layer under parallel-rubbed surface alignment conditions, the problems of greyscale inversion and off-axis colour shift in the dark state and luminance asymmetry distribution in the low grey level, observed in the conventional single-domain FFS LC mode, can be improved effectively. The viewing angle properties of the proposed structure were analysed by using the Póincare sphere and fringe-field-induced LC distribution.  相似文献   

13.
《Liquid crystals》2000,27(3):365-370
We have studied the electro-optical characteristics of a homogeneously aligned nematic liquid crystal (LC) with weak planar anchoring of the director at the bounding substrates. By using the in-plane switching (IPS) of the LC which is achieved by an in-plane electric field, the driving voltage was confirmed to be far less than that of the conventional IPS mode in which both substrates possess strong anchoring characteristics. Moreover, because of the absence of strong subsurface director deformations, the cell could operate optically in the Mauguin regime. Using these features we propose a new type of LC switching mode - in-plane sliding (IPSL) mode. We have realized this mode in a LC cell comprising one reference substrate with strong director anchoring and one substrate covered with photoaligning material with weak anchoring. In order to clarify the switching process, we derived a simplified expression for the threshold voltage on the assumption of uniformity of the in-plane electric field. For the dynamical response of the LC to the in-plane electric field, the switching on and off relaxation times of the IPSL mode were found to be longer than for the traditional IPS mode. However, we have proposed an optimized cell geometry for the IPSL mode with a response time comparable to that of the IPS mode.  相似文献   

14.
The in-plane switching (IPS) mode in liquid crystal displays is known to exhibit a wide viewing angle. However, since the LC director rotates in one direction in the plane, devices with a single domain exhibit both a colour shift depending on the viewing angle, and greyscale inversion at specific angles especially at low grey levels. This has been improved by wedge shaped electrodes so that fields in two directions exist inside a pixel, causing the LC molecules to rotate in opposite directions to compensate each other; this acts as a virtual two domains structure. Nevertheless, the colour shift still exists to some extent, especially at low grey levels. In this paper, we propose a realistic two-domain IPS mode that exhibits a minimized colour shift at all grey levels on changing the viewing direction. In this device, the LC molecules are initially aligned in two directions orthogonal to each other, and two field directions exist perpendicular to each other. We have performed device simulations with respect to viewing angle characteristics, and found that IPS devices with a real two-domain structure reduce the variation of the retardation more effectively, when the viewing direction changes.  相似文献   

15.
ABSTRACT

This letter reports the optical pumped lasing behaviours of a three-layer Bragg resonance cavity consisting of dye-doped cholesteric liquid crystal (DDCLC) microdroplet, polyglycerol-2 and hollow glass microsphere. The function of PG2 is to control the parallel anchoring of the liquid crystal (LC) molecules on the surface of the LC microdroplet. The whispering-gallery mode (WGM), radial Bragg (photonic bandgap, PBG) mode and Bragg WGM (BWGM) are observed in DDCLC microspheres with different helical pitches and LC refractive indices. The formation mechanisms of six types of lasing emission conditions are analysed in detail. The study results present the prospect of controlling the output mode of the laser. Furthermore, such solid shell-based DDCLC microspheres have outstanding potential applications in miniaturised 3D Bragg lasers, sensors, and integrated and tunable optical devices.  相似文献   

16.
It has been a crucial technique to improve the dynamic response characteristics of a liquid crystal wavefront corrector (LCWFC) with optimal cell gap since the LCWFC needs at least 2π (or π) phase modulation in adaptive optics systems (AOSs). We have given a complete process for obtaining the optimal cell gap accurately from a single photoelectric measurement, which can be conducted with a liquid crystal (LC) cell of any known thickness. This method has been analysed theoretically and confirmed experimentally by using a wedge-shaped cell; the experimental results match very well with the theoretical analysis. The response time of an optimal gap cell can be a novel evaluation method of response performance of LC materials.  相似文献   

17.
We propose a homogeneously aligned liquid crystal (LC) cell with double-side protrusion electrodes for fast response and low-voltage operation. In the proposed device, both the bottom and top substrates have pixel electrodes to generate the fringe electric field. Because the penetration depth of the electric field is increased owing to the protrusion electrodes, the operating voltage is very low and the turn-on time is dramatically reduced compared with the conventional in-plane switching (IPS) mode. Moreover, LC molecules anchored strongly to the penetrated protrusion electrodes on both substrates exert a strong restoring force, resulting in a fast turn-off time. We found that the total response time of the LC cell with the proposed structure is three times faster than that of the conventional IPS mode.  相似文献   

18.
The effects of an azo dye on the diffraction efficiency, morphology and electro-optic properties of the transmission mode of a holographic polymer dispersed liquid crystal (LC) have been studied. The azo dye induced an induction period which otherwise does not exist, followed by a gradual increase of the diffraction efficiency to a saturation value which increased with increasing azo dye content, as a result of the azo dye reorientating LC molecules within the droplet. The increased diffraction efficiency was caused by the decreased droplet coalescence which was due to the hindered migration of the LC by the dye molecules, and to LC orientation induced by azo dye molecules giving a high refractive index contrast. The droplet size decreased with increasing dye content. The dye also lowered the threshold voltage due to the high dielectric anisotropy caused by the presence of a strong on-axis dipole moment and decreased the response time.  相似文献   

19.
The concentration, excitation photon wavelength, and polarisation dependent fluorescence of quantum dot (QD)–liquid crystal (LC) mixtures has been studied at room temperature using high-resolution, steady-state fluorescence spectroscopy. The fluorescence of QD–LC mixture increases with increasing QD’s concentration but the spectral red shift of ~10 nm relative to the stock QD–Toluene solution remains independent of concentration. In vertical switching (VS) cells, an external electric field changes the LC alignment direction and enhances the apparent fluorescence intensity. The apparent fluorescence anisotropy compared to that at zero applied electric field monotonically increases up to ~27% at an applied electric field of 0.6 V/µm. These results are consistent with the formation of disc-like assemblages of QDs oriented on planes perpendicular to the director of the nematic liquid crystal (NLC). These findings have important utility in polarisation sensitive photonic devices.  相似文献   

20.
ABSTRACT

In a planar dielectric waveguide, weak confinement of a propagating mode in a high index core leads to a measurable evanescent interaction with the cladding. In this work, we study the effect of a reorientable anisotropic cladding on the behaviour of Transverse Electric (TE) and Transverse Magnetic (TM) mode polarisations using a liquid crystal (LC)-clad waveguide architecture. The polarised evanescent field of a guided mode interacts with a voltage-tunable birefringent LC cladding to deflect an out-coupled beam. Experimental measurements are coupled with a theoretical framework and show good consistency with simulation results. We isolate the effect of mode confinement by changing the thickness of the high index core. Interactions between the LC index ellipsoid and the mode polarisation are probed by changing the initial alignment of the LC. Finally, we examine the difference in deflection between TE and TM modes, which incorporates both a change in mode confinement and a difference in LC index components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号