首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dielectric properties of four recently formulated room temperature multi-component liquid crystalline mixtures with paraelectric (SmA*), ferroelectric (SmC*) and antiferroelectric (SmC*A) phases have been studied as a function of temperature and frequency. Under planer anchoring condition, dielectric spectroscopy revealed all the characteristic modes: low frequency PL and high frequency PH mode in SmC*A phase, Goldstone mode (GM) in SmC* phase and soft mode (SM) in SmA* phase. Dielectric behaviour has also been studied under the application of DC bias electric field. With bias electric field, we have been able to study the soft mode dielectric behaviour in the SmC* phase. An unknown high frequency mode (X-mode) with and without bias is also observed in SmC* phase. Dielectric results are explained in the light of generalised Landau theory. The mixtures show very high soft mode electroclinic coefficient in the SmA* phase in addition to fast switching in SmC*A and SmC* phases [30].  相似文献   

2.
Dielectric and DSC methods were used to study a new fluorinated liquid crystalline compound exhibiting ferroelectric and paraelectric phases as well as an intermediate alpha sub-phase. Two dielectric relaxation processes were revealed in the SmC* phase: a typical Goldstone mode over the whole temperature range and a soft mode in the pre-transition region on both sides of the SmC*–SmA* transition. From the temperature dependencies of the dielectric increments and critical frequencies for the dielectric relaxation processes observed in all the liquid crystalline phases, as well as from texture observations, it was shown that there is a SmC*α sub-phase between the ferroelectric SmC* and paraelectric SmA* phases.  相似文献   

3.
The antiferroelectric liquid crystal (AFLC) under investigation possesses different helical smectic phases. Measurements of the optical rotatory power (ORP) of these phases have elucidated the quality of this method for finding the phase transitions between several phases and for investigating their helical structure. The optical rotatory power as a function of temperature for seven wavelengths of light in the range 441 to 665 nm was measured for different phases of the AFLC material investigated, (R)-1-methylheptyl 4-(4'-n-dodecyloxybiphenyl-4-yl-carbonyloxy)-3-fluorobenzoate, with acronym 12OF1M7. The values of the pitch and the optical anisotropy in the plane of the smectic layers for the FiLC (SmC*FI3) phase and SmC*Aphase have been calculated from the ORP data. The results of the ORP rule out the simple clock model for describing the structure of the SmC* (SmC*I1) and AF (SmC*FI2) phases. The results for these phases can be explained either in terms of the modified Ising model or the highly distorted clock model. The ORP measurements establish the existence of SmC*FI3 found already from dielectric, polarization and polarized IR spectroscopy.  相似文献   

4.
For 1-[3-fluoro-4-(1-methylheptyloxycarbonyl)phenyl]-2-[4-2,2,3,3,4,4,4-heptafluorobutoxybutoxy)biphenyl-4-yl]ethane (1F7), built of chiral molecules, results of dielectric measurements of liquid-crystalline and solid phases are presented. Rich polymorphism of liquid-crystalline (SmC*, SmC*A and SmI*A) phases as well as of solid (Cr1 and Cr2) phases were observed down to –130°C. At a frequency range from 0.1 Hz to 3 MHz, the relaxation processes were detected in ferroelectric SmC*, antiferroelectric SmC*A and highly ordered SmI*A smectic phases. The mechanism of complex dynamics (moleculear and collective) was identified with the help of the bias field. Vitrification of conformationally disordered crystal phase Cr2 was found in accordance with calorimetric observations.  相似文献   

5.
Frequency- and temperature-dependent dielectric and switching parameters of a room temperature tri-component antiferroelectric liquid crystal mixture W-287 have been determined. Dielectric, optical texture and thermodynamic studies show wide room temperature range antiferroelectric SmC*a (?91.1°C to <–25°C) phase in addition to high temperature paraelectric SmA* (?2.6°C) and ferroelectric SmC* (?4.4°C) phases. The dielectric studies carried out in the frequency range of 1–35 MHz under planar anchoring condition of the molecules show five different relaxation modes appearing in the SmA*, SmC* and SmC*a phases. Using Curie–Weiss law fit, ferroelectric SmC* to paraelectric SmA* transition temperature has been found to be 91.8°C. The dielectric response of SmC*a phase exhibits unusually three relaxation modes due to collective as well as individual molecular processes in addition to phason mode in the SmC* phase and amplitudon mode in the SmA* phase. Spontaneous polarisation, switching time and rotational viscosity have also been determined. The maximum value of PS is ?300 nC/cm2, whereas viscosity is moderate. Switching time is of the order of few milli seconds.  相似文献   

6.
New compound showing a direct SmA*–SmCA* phase transition was synthesised. As far as authors know there are a few pure compounds showing para- and antiferroelectric phases without SmC* between them. Direct current (DC) field applied into a planar-oriented cell induces ferroelectric SmC* phase in an investigated compound. Typical for SmC*, Goldstone mode starts to be detectable. DC field also shifts down the temperature of a SmCA* phase creation. Moreover, modes in the appearing antiferroelectic phase are enhanced by DC field. This paper shows and discusses relations between modes detected in SmA*, SmCA* and SmC* (SmC* phase – nucleated by DC field) phases. Parameters of observed modes are calculated using the Cole–Cole relaxation model and a calculation procedure useful especially for high frequency relaxations (higher than 200 kHz).  相似文献   

7.
The fluorinated compound, (S)-4′′-(6-perfluoropentanoyoxyhexyl-1-oxy)-2′,3′-difluoro-4-(1-methylheptyloxycarbonyl)-[1,1′:4′,1′′]-terphenyl, which exhibits antiferroelectric SmCA*, ferroelectric SmC* and paraelectric SmA* phases, has been investigated by polarising optical microscopy, differential scanning calorimetry, X-ray diffraction and frequency-dependent dielectric spectroscopy methods. X-ray studies have revealed that the layer thickness remains almost constant in the SmA* phase but within the SmC* and SmCA* phases it decreases with decreasing temperature, a step jump being observed only at the SmA*–SmC* transition. The tilt angle in the SmCA* phase decreases from 22.2° to 19.5°, and in the SmC* phase it decreases from 18.8° to 5.5°. Spontaneous polarisation is found to be quite high and varies between 74.1 and 118.7 nC cm?2. The variation in ε′ and ε′′ with temperature shows a discontinuous change at the transition temperatures. Goldstone mode relaxation is only observed in the ferroelectric and antiferroelectric phases and is found to be of the Cole–Cole type. The soft mode is observed on application of a bias field near the SmC*–SmA* transition. Neither the soft mode nor the anti-phase azimuthal angle fluctuation mode is observed in SmCA*. Rotational viscosity decreases quite rapidly with temperature but in a different manner in the ferroelectric and antiferroelectric phases. Activation energy for this process is found to be 48.14 kJ mol?1 in the SmC* phase.  相似文献   

8.
Novel chiral two ring compounds possessing phenylethenoate moieties were synthesized and their liquid crystalline properties determined. Some of these compounds were found to exhibit SmC* γ, AF and SmC* A phases, whereas in other compounds only SmA* and SmC* phases appear. The influence of the molecular structure on the appearance of SmC* γ, AF and SmC* γ phases is discussed. The basic electro-optical properties of the homologous series of ( S )-( E )4-(1-methylheptyloxycarbonyl)phenyl 4-alkoxycinnamates, in which SmC*, SmC* γ, AF and SmC* A phases appear, were also investigated. High values of spontaneous polarization, low threshold voltages and fast switching times at room temperature were observed.  相似文献   

9.
The molecular dynamics of a ferroelectric liquid crystal, denoted ZLL 7/* , is investigated by means of 2H NMR relaxation. The spin–lattice (T1Q and T1Z) and spin–spin (T2) relaxation times of two isotopomers of ZLL 7/* , labeled on the phenyl and biphenyl fragments, are measured and their behavior upon passing from the SmA to the hexatic phase, through the ferroelectric SmC*, antiferroelectric SmC*A, and re‐entrant ferroelectric SmC*re phases, is discussed. A comparison between the measured T2 and T2*, directly related to the experimental linewidth, provides information on the heterogeneity of the system, thus allowing confirmation of previous hypotheses concerning the structural and ordering properties of the SmC*A and SmC*re phases. The possibility to look at different sites of the core of the ZLL 7/* smectogen reveals a peculiar sensitivity of the phenyl moiety with respect to the biphenyl fragment, which may be justified by its vicinity to the chiral centers. Interestingly, the trend of the longitudinal relaxation times is characterized by a minimum that corresponds to the SmC*A and SmC*re phases, which is reproducible for the two isotopomers and at several Larmor frequencies. A quantitative analysis of T1Q and T1Z is performed in the SmA and SmC* phases, for which the narrowing regime approximation is valid. A multifrequency approach is applied to self‐consistently determine the diffusion coefficients for the overall molecular motions, namely spinning and tumbling, and the internal rotations around the para axes of the phenyl and biphenyl fragments. The effect of the magnetic field in unwinding the helical structure of the SmC* phase (for H>9 T) allows observation of a sensitive change in the rotational diffusion coefficients in the frustrated unwound SmC* phase with respect to the SmC* phase.  相似文献   

10.
Two series of ferroelectric liquid crystals derived from (S)‐2‐(6‐methoxy‐2‐naphthyl)propionic acid, with non‐fluorinated or semi‐perfluorinated alkanes positioned at a chiral terminal chain, have been synthesized and characterized by differential scanning calorimetry, polarizing optical microscopy and electro‐optical measurements. The non‐fluorinated compounds, 1‐hexyl (S)‐2‐{6‐[4‐(4‐alkanoyloxyphenyl)benzoyloxy]‐2‐napthyl}propionates exhibit rich mesomorphism—the BPII, N*, TGBA*, SmA* and SmC* phases. The fluorinated compounds display only the SmA* and SmC* phases, suggesting that the fluorination promotes the formation of smectic phases. In addition, the SmA* and SmC* phases of the fluorinated compounds have enhanced thermal stability as compared with the corresponding phases of the non‐fluorinated compounds. The spontaneous polarization (P s values) for the non‐fluorinated compounds are higher than those of the fluorinated compounds at any reduced temperature below the SmA*–SmC* transition. The electro‐optical responses measured for these compounds in the ferroelectric phase displayed thresholdless, V‐shaped switching.  相似文献   

11.
Two new chiral series, with benzoate cores and monofluoro-substitution in positions 2 and 3 of the first phenyl ring near the chiral chain, have been synthesized and characterized. The mesomorphic properties have been analysed by optical microscopy, differential scanning calorimetry and electro-optical measurements. The first series (Ic) displays a very rich polymorphism including SmA, SmC*α, SmC*, SmC*FI, SmC*A phases, whereas the second (Ib) does not exhibit the SmC*A phase, and moreover only displays the SmA phase for short alkoxy chains. The effect of the position of the fluoro substituent and the influence of the alkoxy chain length on the mesomorphic behaviour are discussed.  相似文献   

12.
The substance MHPOBC is the oldest and still most important reference antiferroelectric liquid crystal (AFLC). There is still considerable controversy concerning the correct phase designations for this material and, in particular, about the presence or absence of SmC* in its phase sequence. By means of dielectric spectroscopy and polarizing microscopy, we show that whereas the pure compound lacks the SmC* phase, this phase rapidly replaces the SmC*β subphase through the reduced purity resulting from temperature-induced chemical degradation which is hard to avoid under standard experimental conditions. X-ray investigations furthermore show that this change in phase sequence is coupled to a decrease in translational order. This explains the large variations in the reported phase sequence and electro-optic behaviour of MHPOBC, in particular concerning the SmC*β phase which has been said to exhibit ferro-, ferri- as well as antiferroelectric properties. It is likely that the sensitivity of the AFLC phase sequence to sample purity is a general property of AFLC materials. We discuss the importance of optical and chemical purity as well as tilt and spontaneous polarization for the observed phase sequence and propose that one of the key features determining the existence of the different tilted structures is the antagonism between orientational (nematic) and translational (smectic) order. The decreased smectic order (increased layer interdigitation) imposed by chemical impurities promotes the synclinic SmC* phase at the cost of the AFLC phases SmC*α, SmC*β, SmC*γ and SmC*a. We also propose that the SmA* phase in FLC and AFLC materials may actually have a somewhat different character and, depending on its microstructure, some of the tilted phases can be expected to appear or not to appear in the phase sequence. AFLC materials exhibiting a direct SmA* -SmC*a transition are found to be typical ‘de Vries smectics’, with very high orientational disorder in the SmA* phase. Finally, we discuss the fact that SmC*β and SmC*γ have two superposed helical superstructures and explain the observation that the handedness of the large scale helix may very well change sign, while the handedness on the unit cell level is preserved.  相似文献   

13.
The syntheses and liquid crystal properties of two novel esters derived from 4-(4-(decyloxy)phenyl)thiophene-2-carboxylic acid and either (±)-oct-1-en-3-yl 4?-hydroxybiphenyl-4-carboxylate or (S)-(+)-oct-1-en-3-yl 4?-hydroxybiphenyl-4-carboxylate are reported. Within the synthesis of the (S)-(+)-oct-1-en-3-yl 4?-hydroxybiphenyl-4-carboxylate, mushroom alcohol, a natural source of chiral oct-1-en-3-ol and a platform molecule, was employed. The phases present within these compounds have been characterised by thermal optical polarising microscopy and differential scanning calorimetry and assigned as SmA, SmC and SmC Alt for the racemic compound and; SmA, SmC* and SmC*A for the enantiomerically pure compound. This is first reported occurrence of a liquid crystalline ester derived from mushroom alcohol, and potential platform molecule, exhibiting SmA*, SmC* and SmC*A phases.  相似文献   

14.
《Liquid crystals》2012,39(15):2256-2268
ABSTRACT

Physical properties of the partially fluorinated compound 3F5FPhF, with hockey stick-like molecules, were studied by complementary methods. Apart from the already reported paraelectric SmA*, ferroelectric SmC* and antiferroelectric SmC*A phases, the presence of the smectic C*α subphase in the phase sequence was proved by differential scanning calorimetry, polarising optical microscopy, electro-optic and dielectric spectroscopy methods. The temperature dependence of the smectic layer thickness and correlation length of the lateral short-range order was determined by X-ray diffraction. Based on dielectric measurements three relaxation processes were revealed in the antiferroelectric SmC*A phase (two collective: PL, PH and one molecular: s-process), two collective ones (Goldstone and soft modes) were found both in the ferroelectric SmC* phase and SmC*α subphase while one relaxation process (soft mode) in the paraelectric SmA* phase. The results were compared with that obtained for other structurally similar compounds, and it was shown that even addition of one methylene group to the side chain influences much on the physical properties.  相似文献   

15.
We have performed a detailed dielectric study of three compounds presenting ferrielectric phases over large temperature intervals. The relaxation processes detected in the SmC*FI phases are highly polidispersive. We have repeatedly observed the surface layer mode described by Bourny et al. [1] and a weak ferrielectric mode, whose relaxation frequency is always higher on heating than on cooling runs. The temperature interval where SmC*FI phases occur is apparently independent of cooling/heating rates and of the history of the sample.  相似文献   

16.
A new series of symmetrical S-shaped oligomers 4,4′-bis[(5-cholesteryloxycarbonylpentyl alkoxy)hexyloxy]biphenyl consisting of outer spacers –(COCH2)n– as well as an inner spacer –(CH2)6– has been synthesised. Their liquid crystalline properties and phase transition temperatures with associated enthalpy changes are recorded. The outer spacers are varied from n = 5–8 to 10 and 11. The compounds with even spacer exhibit enantiotropic phase and oligomers with odd parity display monotropic phase. The oligomers with odd membered n = 5, 7 and 11 exhibit N* and SmC* phases upon cooling. Whilst upon heating, the homologues with even-numbered member n = 6 and 10 show N* phase and upon cooling, both compounds exhibit N* and SmC* phases. However, oligomer with outer spacer n = 8 displays enantiotropic N* and SmC* phases. The temperature range of N* phase for even and odd membered decreased as the outer spacers are increased. The odd–even effect has been found in the I–N* transition temperatures where the odd-parity oligomers exhibit lower values when compared to compounds of an even-parity series. The X-ray diffraction measurements reveal the appearance of SmC* phase that can be associated with the monolayer ordering of these oligomers.  相似文献   

17.
Compounds with differing numbers of lactate units in the chiral part were synthesized. For all materials, at least two smectic phases were found. In addition to the SmA, the SmC* and/or the tilted hexatic SmI*(F*) phase appear according to the length of the non-chiral alkyl chain. For the shortest non-chiral chain, a direct transition from the SmA phase to the SmI*(F*) phase has been discovered and studied. For compounds with the 2-(S)-methylbutyl alkyl chain and two lactate units in the chiral part the antiferroelectric SmC*A phase occurs. The ferroelectric character of the hexatic phase has been confirmed even just below the SmC*A phase.  相似文献   

18.
An achiral swallow-tailed material, 2-propylpentyl 4-(4′-decyloxybiphenyl-4-carbonyloxy)benzoate, p, showing SmA and SmCalt phases was prepared for mixing (by weight percentage) with an antiferroelectric liquid crystal, (S)-MHPOBC, m, for the study. The binary mixture p/15/m85 using (S)-MHPOBC (85%) as a host doped with achiral material (15%) resulted in a phase sequence SmA-SmC*-SmC*A. The electro-optic response of this mixture in the ferroelectric SmC* phase displayed V-shaped switching, while that in the antiferroelectric SmC*A phase displayed a double hysteresis switching. The mixture p85/m15 possessed SmA* and SmC*A phases; V-shaped switching was found in the antiferroelectric SmC*A phase of this mixture. These optical phenomena implied that a binary mixture containing a larger amount of achiral swallow-tailed material and/or possessing relatively lower polarization favours the occurrence of V-shaped switching in the antiferroelectric phase. The results of this work also suggested that thresholdless V-shaped switching in chiral smectic liquid crystals can be achieved by mixing an achiral swallow-tailed material with an antiferroelectric liquid crystal.  相似文献   

19.
《Liquid crystals》1997,22(4):409-417
Temperature and bias-field dependences of dielectric behaviour in the antiferroelectric liquid crystal, R-MHPOBC, were investigated (see also previous paper). There are mainly two relaxation modes in the SmC*alpha and SmC* phases: one behaves as the soft-mode, which shows significant slowing down in the SmA* and SmC*alpha phases; the other one appears at lower frequencies and changes the dielectric strength remarkably, especially in the SmC* phase, which is considered to relate to the azimuthal phase-fluctuation of molecules in the parallel tilt sequences of the smectic layers. These two modes show different bias field dependences in different C* subphases. In the SmC*A phase, two other types of relaxation mode were observed, which are probably due to the in-phase and anti-phase azimuthal angle fluctuations of molecules in the anti-tilt pairs.  相似文献   

20.
We have studied by optical means recently synthesized benzoate ester series exhibiting SmCA*, SmCFI*, SmC* and SmCalpha* phases. We have made pitch measurements on SmCA* and SmC* phases, using the Grandjean-Cano method, and optical period measurements on the SmCalpha* phase, on free surface drops. The results are in good agreement with the pitch and optical period evolutions we previously described for other compounds - especially those of a thiobenzoate series. We have also shown that one of the structural models proposed in the literature is in agreement with our experimental results, and have established a qualitative relation between optical period measurements, the azimuthal difference between two successive layers, and the helical pitch. We present results for several benzoate compounds, using a new classification of the observed behaviours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号