首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermodynamical, dielectric, optical and electro-optical characterisation of pure 8CB and its composites with gold and silver nanoparticles have been studied. Thermodynamical studies suggest a decrease in clearing temperature of the nanocomposite systems as compared to the pure system. Dielectric parameters of pure nematic liquid crystal and nanocomposites in the homeotropic and planar aligned samples have been measured in the frequency range of 1–35 MHz. Ionic conductivity increases significantly in nematic and smectic Ad (SmAd) phases, whereas dielectric anisotropy is almost unchanged for both the nanocomposites. Threshold voltage for Freederick transition, switching voltage and splay elastic constant have decreased in the case of nanocomposite systems. Relaxation frequency and activation energy of an observed relaxation mode corresponding to molecular rotation about the short axis increase in the SmAd phases of both the nanocomposites. The optical study suggests that due to dispersion of nanoparticles, the optical band gap has decreased.  相似文献   

2.
ABSTRACT

We have prepared the composites of a room temperature nematic liquid crystalline material namely 4-(trans-4′-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT) and gold nanoparticles (GNPs). Thermodynamic, electro-optical and dielectric properties have been investigated. Effect of dispersion of GNPs on various electro-optical and display parameters of host liquid crystalline material have been studied. Physical parameters such as threshold voltage, dielectric anisotropy and splay elastic constant have altered for composite systems. Due to the dispersion of GNPs, nematic to isotropic transition temperature is significantly increased. Relaxation frequency corresponding to flip-flop motion of the 6CHBT molecules about their short axes has increased due to the presence of GNPs.  相似文献   

3.
Composites of nematic liquid crystals (NLCs) and ferroelectric barium titanate (BaTiO3) nanoparticles (NPs) have been prepared. The alignments of NPs in the host medium have been demonstrated. Effect of NPs doping on various display parameters of NLCs, namely, threshold voltage, dielectric anisotropy and splay elastic constant has been studied using electro-optical and dielectric studies. The nematic ordering of host supports alignment of NPs parallel to the director which consequently improves electro-optical parameters in the composite system. The dielectric and electro-optic properties of LC–NPs composites have been discussed in frame of conventional theories of NLCs.  相似文献   

4.
We have prepared the composites of a room temperature Nematic Liquid Crystals and Single-Walled Carbon Nanotubes. Effect of dispersion of nanotubes on various dielectric and electro-optic parameters on host nematic liquid crystals were investigated. The changes in dielectric and electro-optic parameters (viz: relative permittivity, dielectric anisotropy, switching threshold voltage and splay elastic constant) were observed for composite systems. The composites filled in the cells have been probed under applied bias electric field and it enhanced the nematic ordering of the liquid crystal molecules in the composites which results overall improvement of dielectric and electro-optic parameters of the prepared composites.  相似文献   

5.
《Liquid crystals》2012,39(12):1808-1820
ABSTRACT

The effect of biowaste porous carbon nanoparticles (PCNPs) on the dielectric and electro-optical properties of nematic liquid crystal (LC) mixture (1823A) of 4-(4-alkyl-cyclohexyl) benzene isothiocyanates and 4-(4-alkyl-cyclohexyl) biphenyl isothiocyanates has been studied. The dielectric permittivity of nematic LC has been increased with the dispersion of carbon NPs. The dielectric anisotropy has been calculated and found to be decreased with the dispersion of PCNPs into the pure nematic LC. The response time and birefringence have been also observed with the variation of temperature, frequency as well as the concentrations of carbon NPs. After the dispersion of PCNPs achieved better birefringence and faster response in the dispersed system, which is the significant application in display devices. Threshold voltage splay elastic coefficient and rotational viscosity have been calculated for both pure and NPs dispersed nematic system. Its value is increased with the dispersion of NPs. Additionally, photoluminescence and figure of merit have investigated as a comparative study of nematic matrix as well the dispersed system. The experimental results have been found to have good agreement with the theoretical data of nematic LC. An effort has been made to explain these experimental results on the basis of interaction between nematic molecules and carbon NPs.  相似文献   

6.
We prepared composites of a liquid crystalline material, 4-pentylphenyl 4-octyloxybenzoate (4PP4OB) and cadmium selenide quantum dots (CdSe-QDs) and investigated their thermodynamic, electro-optical and dielectric properties. The effect of QDs on transition temperature from isotropic to nematic and nematic to smectic A phases was evaluated in this study. The effect of CdSe-QDs inclusion on various display parameters on host liquid crystals was studied in the nematic phase. The electrical parameters of the composites – relative permittivity, dielectric anisotropy, dielectric loss and dielectric relaxation – were investigated in the nematic and smectic phases. The changes in dielectric parameters of the composites are explained in terms of Maier–Meier theory.  相似文献   

7.
The effect of silver nanoparticles (AgNPs) of diameters 6 and 100 nm on a discotic liquid crystalline material, namely 2,3,6,7,10,11-hexabutyloxytriphenylene (in short HAT4), has been observed in thermodynamic, electrical and optical texture studies. Silver nanoparticles (0.6 wt%) of diameter ~6 nm demonstrate a negligible (but ~100 nm shows appreciable) effect on the broad temperature range plastic columnar hexagonal (Colhex) phase (~65.0°C) of pure HAT4. The dielectric studies have been carried out in the frequency range of 10 Hz–35 MHz under homeotropic anchoring conditions of the molecules. In the low frequency region of pure HAT4 and its AgNP composites, a relaxation mode has been observed. AgNPs of 6 nm elevate the value of dielectric permittivity of the plastic columnar hexagonal phase of pure HAT4. The dc conductivity of pure HAT4 and its AgNP composite (6 and 100 nm) material has been determined. The optical band gap for pure and AgNP composites of HAT4 has been determined by the ultraviolet-visible study. Due to insertion of AgNPs, the optical band gap of HAT4 has reduced.  相似文献   

8.
In the present work, single-walled carbon nanotubes (SWCNTs) were dispersed in a room temperature nematic liquid crystal 4-pentyl-4′-cyanobiphenyl at the concentration of 0.02 and 0.05 wt%. Differential scanning calorimetry and temperature-dependent dielectric studies suggest decrease in clearing temperature of the composite materials as compared to the pure material. Ionic conductivity increases by two orders of magnitude due to the dispersion of such a low concentration (0.05 wt%) of SWCNTs. Dielectric studies also show that the presence of the SWCNTs decreases the effective longitudinal as well as transverse components of the dielectric permittivity. For homeotropic aligned samples, a relaxation mechanism has been detected in the lower MHz region both for the pure as well as dispersed samples. Presence of SWCNTs increases the relaxation frequency corresponding to flip-flop motion of molecules around their short axes. From frequency-dependent dielectric studies, important dielectric parameters such as relaxation frequency, dielectric strength and distribution parameters have been determined. Electro-optical experiments show that the threshold voltage decreases and the steepness of the transmission voltage curve improves due to the dispersion of SWCNTs.  相似文献   

9.
The morphology, microhardness, and electrical properties of composites consisting of conductive polypyrrole (PPy) dispersed into a nonconductive polypropylene matrix (PP) as pure component or in form of a sodium montmorillonite/PPy (MMT/PPy) composite have been studied. For comparison, also PP/MMT composites were studied. All types of composites were processed by compression molding or by melt mixing followed by compression molding into plates, which were used for characterization. Scanning electron microscopy and transmission electron microscopy was used to examine the morphology of the prepared materials. The investigation of electrical and dielectric properties was done by dielectric relaxation spectroscopy in a wide frequency range and was related to the composite composition and processing method. The analysis of the conductivity as a function of temperature indicated that the charge transfer mechanism could be described by the variable range hopping model in three dimensions. The microhardness of PP/MMT/PPy composites with different content of MMT or PPy was determined and the creep rate has been estimated. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 407–423, 2009  相似文献   

10.
A new type of graphene@poly(dopamine)-Ag (Gns@PDA-Ag) core-shell nanoplatelets was designed to improve the dielectric properties of thermoplastic polyurethane (TPU) composites. The microstructure, dielectric performances and the effects of Ag nanoparticles’ content on the dielectric properties of composites were investigated. Results showed that the addition of Gns@PDA-Ag nanoplatelets could effectively improve the dielectric constant of the composite. When tested at low frequency (below 100 Hz), the highest dielectric constant of the TPU/Gns@PDA-0.78Ag (3 wt%) composite was 118.82, which was 14 times higher than that of pure TPU (8.39). This increase in dielectric constant should be attributed to the strong polarization effect of conductive graphene nanoflakes (Gns) and Ag nanoparticles to TPU molecules. The PDA shell could prevent direct contact between Gns and Ag nanoparticles, limit the formation of conductive pathways, which kept the dielectric loss of the composites at a low level and maintained the breakdown strength in a stable state. Compared with pure TPU (0.29), the minimum dielectric loss of composites was only 0.36. Moreover, after Gns@PDA-Ag nanoplatelets with higher Ag content were doped into TPU, the composite showed a higher dielectric constant, and due to the existence of the Coulomb blocking effect, the dielectric loss did not increase significantly. The scalability and simplicity of the described method will provide a promising route to polymer composites for highspeed integrated circuits and energy storage applications.  相似文献   

11.
This paper reports the structural, electrical, dielectric and mechanical properties of the Styrene-acrylonitrile (SAN)/graphite sheets (GS) composites. The composites were prepared by in situ polymerization. The variation of electrical conductivity, dielectric constant and ac conductivity as a function of volume fraction of GS was found to follow the power law model. The dielectric constant and dissipation factor of SAN/GS composites increased significantly near the percolation. The frequency dependence of dielectric constant, dissipation factor and ac conductivity was also analyzed. Nearly ohmic behavior of current density with electric field was observed above the percolation threshold. The composite was found to possess the hardness of pure polymer at the threshold value of GS.  相似文献   

12.
The preparation of nematic liquid crystals mixtures results in changing of molecular relaxations in comparison to pure substances. Typical example is the creation of dual-frequency nematic liquid crystals using a base mixture and functional admixtures. In this paper, we present how dielectric properties of starting compounds change at mixture preparation. Three dual-frequency nematic mixtures of different composition were prepared and examined by means of dielectric spectroscopy in a wide frequency (100 Hz to 10 MHz) and temperature range (170°C to ?60°C). Parameters of detected modes for pure compounds and final mixtures were calculated and their relationships with crossover frequency are discussed.  相似文献   

13.
Materials with outstanding mechanical properties and excellent dielectric properties are increasingly favored in the microelectronics industry. The application of polyimide (PI) in the field of microelectronics is limited because of the fact that PI with excellent mechanical properties does not have special features in the dielectric properties. In this work, PI composite films with high dielectric properties and excellent mechanical properties are fabricated by in-situ reduction of fluorinated graphene (FG) in polyamide acid (PAA) composites. The dielectric permittivity of pure PI is 3.47 and the maximum energy storage density is 0.664 J/cm3 at 100 Hz, while the dielectric permittivity of the PI composite films reaches 235.74 under the same conditions, a 68-times increase compared to the pure PI, and the maximum energy storage density is 5.651, a 9-times increase compared to the pure PI films. This method not only solves the problem of the aggregation of the filler particles in the PI matrix and maintains the intrinsic excellent mechanical properties of the PI, but also significantly improves the dielectric properties of the PI.  相似文献   

14.
The dielectric properties of a nematogenic dimer alpha,omega-bis(4-cyanobiphenyl-4-yloxy)decane in the nematic and isotropic phases have been investigated in the frequency range between 100 Hz and 13 MHz. It was found that the compound is characterized by a positive dielectric anisotropy. The dielectric constant in the nematic phase is lower than that in the isotropic phase, which suggests variation in the conformational distribution of the dimer after the phase transition. Only one relaxation process, both in the nematic and isotropic phases, has been observed in the frequency range used: the relaxation frequency has been found to take values between 2 and 4 MHz, depending on the temperature.  相似文献   

15.
聚苯乙烯—钛酸钡复合材料介电性能的研究   总被引:4,自引:0,他引:4  
以聚苯乙烯与化学沉淀法钛酸钡陶瓷为基本组成,采用溶液共混,溶液聚合,表面处理后溶液聚合三种方法进行复合,发现后两种复合的钛酸钡颗粒表面发生界面变化,形成活性界面,使得溶液聚合法和表面处理后溶液聚合所得到的材料具有较低的介电损耗,在高频下能保持较高的介电系数。  相似文献   

16.
The CLST/PTFE/5%GF composite sharply decreases the CTE in both X&Y and Z directions, obtained a promising microwave dielectric material for microwave communication.  相似文献   

17.
Two types of novel Polyhedral Oligomeric Silsesquioxanes respectively containing hydroxyl group and epoxy group (P-POSS and E-POSS) were achieved and evaluated. The structure had been characterized by IR spectra and NMR spectra. Dicyclopentadiene bisphenol dicyanate ester (DCPDCE) composites were then prepared using P-POSS and E-POSS respectively. Their effect on the curing kinetics, dielectric, mechanical, flame-retardant and thermal properties and water absorption of the resulting composites were investigated. The results suggested that the addition of modified POSS could facilitate the curing reaction of DCPDCE. Besides, the DCPDCE composites containing modified POSS exhibited excellent flame-retardant property over pure DCPDCE resin. Adding only a little amount as small as 1.5 wt% P-POSS or 2.5 wt% E-POSS could change the UL-94V of DCPDCE resin from V-2 to V-0. The composite with P-POSS exhibited better flame-retardant and thermal properties than the composite with E-POSS. However, composite filled with E-POSS presented better dielectric property and lower water absorption.  相似文献   

18.
Polymeric composites gain increasing interest in materials research and practice applications due to combining excellent electric property of piezoelectric ceramic and flexibility of polymer matrix. A novel decoupling capacitor with high dielectric constant has been developed by mixing polyamide-11 (PA11) with ferroelectric ceramic lead zirconate titanates (PZT). The composite demonstrates high dielectric constant, with better frequency stability and low dielectric losses. The dependence of the dielectric constant on frequency and polymer fraction was investigated. The excellent dielectric constant of 100 and the dielectric loss of 0.1 can be obtained at a PA11 volume fraction of 0.4. The enhanced dielectric behavior originates from good connection between ferroelectric ceramic and PA11 Dielectric losses of the PZT/PA11 composites change slightly with the test frequency. Our findings suggest that the created polymeric composites with relatively high dielectric constant represent a novel type of material that is flexible and easy to process. Moreover, is suited to applications in advanced decoupling capacitors and flexible electronics.  相似文献   

19.
In this article, a newly synthesised ferroelectric liquid crystal (FLC) material, namely LAHS 22, has been characterised. The characterisation of the FLC material has been performed using dielectric relaxation spectroscopy, differential scanning calorimetry and polarisation optical microscopy. We observed an enhancement in the dielectric and electro-optical properties of the FLC material by incorporating gold nanoparticles (GNPs)-decorated multiwalled carbon nanotubes (MWCNTs). The GNPs-decorated MWCNTs cause an increment in dielectric dispersion (up to kHz), absorption, spontaneous polarisation and rotational viscosity of the FLC material. The pure and GNPs-decorated MWCNTs doped FLC cells were analysed by means of various dielectric spectroscopic and optical measurements. The observed enhancement in the dielectric and electro-optical properties of the FLC material has also been studied with concentration of GNPs-decorated MWCNTs in FLC material. The GNPs-decorated MWCNTs/FLC composites are not only of fundamental importance, but also useful materials for device applications such as liquid crystal displays and memory devices.  相似文献   

20.
Changes in the dielectric and thermodynamical properties of electron beam-irradiated 4′-octyl-4-cyanobiphenyl (8CB) were studied. Irradiation-induced changes in the phase transition temperature, dielectric anisotropy, relaxation frequency and activation energy of an observed non-collective relaxation mode corresponding to molecular rotation about the short axis were determined in both nematic and smectic Ad phases. In the nematic phase, dielectric anisotropy increased for a small dose but decreased for a relatively high dose, whereas the relaxation frequency increased due to the irradiation. The pure and irradiated samples were characterised by UV–visible spectroscopy, Fourier transform infrared spectroscopy, gas chromatography, gas chromatography coupled with mass spectroscopy and pulse radiolysis. The observed changes in the dielectric parameters are related to the detachment of the CN group from some of the 8CB molecules due to the electron beam irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号