首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The phase behaviour of a number of N-alkylimidazolium salts was studied using polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction. Two of these compounds exhibit lamellar mesophases at temperatures above 50°C. In these systems, the liquid crystalline behaviour may be induced at room temperature by shear. Sheared films of these materials, observed between crossed polarisers, have a morphology that is typical of (wet) liquid foams: they partition into dark domains separated by brighter (birefringent) walls, which are approximately arcs of circle and meet at “Plateau borders” with three or more sides. Where walls meet three at a time, they do so at approximately 120° angles. These patterns coarsen with time and both T1 and T2 processes have been observed, as in foams. The time evolution of domains is also consistent with von Neumann's law. We conjecture that the bright walls are regions of high concentration of defects produced by shear, and that the system is dominated by the interfacial tension between these walls and the uniform domains. The control of self-organised monodomains, as observed in these systems, is expected to play an important role in potential applications.  相似文献   

2.
3.
The phase behaviour of a number of N‐alkylimidazolium salts was studied using polarizing optical microscopy, differential scanning calorimetry and X‐ray diffraction. Two of these compounds exhibit lamellar mesophases at temperatures above 50°C. In these systems, the liquid crystalline behaviour may be induced at room temperature by shear. Sheared films of these materials, observed between crossed polarisers, have a morphology that is typical of (wet) liquid foams: they partition into dark domains separated by brighter (birefringent) walls, which are approximately arcs of circle and meet at “Plateau borders” with three or more sides. Where walls meet three at a time, they do so at approximately 120° angles. These patterns coarsen with time and both T1 and T2 processes have been observed, as in foams. The time evolution of domains is also consistent with von Neumann's law. We conjecture that the bright walls are regions of high concentration of defects produced by shear, and that the system is dominated by the interfacial tension between these walls and the uniform domains. The control of self‐organised monodomains, as observed in these systems, is expected to play an important role in potential applications.  相似文献   

4.
5.
Ionic liquids and ionic liquid crystals of imidazolium salts composed of various transition and main group metals have been reviewed. Ionic metal complexes of imidazoles and N-heterocyclic carbenes possess the similar properties were also included. These types of ILs and ILCs have been realized as potential solvents, catalysts, catalyst precursors and reagents for many organic transformations and provide ecofriendly protocols. They have also been found to play key roles in material science. Many of these IL systems are air- and moisture stable and are considered as alternatives for air- and moisture sensitive chloroaluminate-based ILs.  相似文献   

6.
The influence of confinement on the ionic liquid crystal (ILC) [C(18)C(1)Im][OTf] is studied using differential scanning calorimetry (DSC), polarized optical microscopy (POM), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The ILC studied is supported on Si-based powders and glasses with pore sizes ranging from 11 to 50 nm. The temperature of the solid-to-liquid-crystalline phase transition seems mostly unaffected by the confinement, whereas the temperature of the liquid-crystalline-to-liquid phase transition is depressed for smaller pore sizes. A contact layer with a thickness in the order of 2 nm is identified. The contact layer exhibits a phase transition at a temperature 30 K lower than the solid-to-liquid-crystalline phase transition observed for the neat ILC. For applications within the "supported ionic liquid phase (SILP)" concept, the experiments show that in pores of diameter 50 nm a pore filling of α>0.4 is sufficient to reproduce the phase transitions of the neat ILC.  相似文献   

7.
Xin Li  Xin Lan  Shuang Ma  Lu Bai  Mei Tian 《Liquid crystals》2013,40(12):1843-1853
A series of cholesteryl-containing imidazolium chlorides and imidazolium tetrachloroaluminates were synthesised, and the chemical structure, liquid crystalline behaviour and ionic conductivity were characterised by several technical methods. Whereas the imidazolium chlorides show chiral smectic A (SmA*) phase on heating and cooling cycles, the imidazolium tetrachloroaluminates display chiral nematic (N*) phase, which is uncommon for ionic liquid crystals (ILCs). The imidazolium chlorides display similar phase transition temperature and entropy, indicating the cholesteryl component influence predominately on the phase transition rather than the different alkyl substituent groups. The imidazolium tetrachloroaluminates show lower melting point temperatures and lower clear point temperature than the imidazolium chlorides. The mesophases exist at rather moderate temperatures. Non-mesomorphic imidazolium tetrachloroaluminate(III) salts with short alkyl substituents have been known for a long time, and the synthesised imidazolium tetrachloroaluminates are the first examples of tetrahalogenoaluminate(III)-containing ILCs. For the imidazolium tetrachloroaluminates, imidazolium cations combine loosely with AlCl4? ions because AlCl4? ions are large and occupy more space in spite of the hydrogen bond and electrostatic attraction interaction, indicating that the layer structure can be destroyed easily to form N* phase on heating.  相似文献   

8.
A series of polymerized ionic liquid crystals (PILCs) bearing fluorinated cholesteryl mesogens were synthesized in this work, which include polymerized imidazolium bromides (PIBs) and polymerized imidazolium hexafluorophosphates (PIHs). The PIBs were synthesized using alkyl bromine‐containing polysiloxanes and 1‐butyl‐1H‐imidazole, and the PIHs were synthesized by anion metathesis reaction using the corresponding PIBs and KPF6. The chemical structures, liquid crystalline (LC) properties, and electrorheological (ER) effect of these PILCs were characterized by use of various experimental techniques. All the PILCs showed smectic A mesophase on heating and cooling cycles. The smectic layer structure of these PILCs are originated from the rigid fluorinated cholesteryl mesogens and the flexible moieties in the LC phase, but the ion pairs (imidazolium cations–PF6?, Im+–PF6?; or imidazolium cations–Br?, Im+–Br?) can disperse in the polysiloxane matrix and expand the d‐spacing in the smectic layers. The PIHs show lower Tg and Ti than the corresponding precursor PIBs, which is due to the larger ion volume of Im+–PF6? for PIHs than that of Im+–Br? for PIBs. A series of 40 V% ER fluids were prepared by mixing the PILCs with polydimethylsiloxane (PDMS), and the ER behaviors were studied. All the PILC/PDMS fluids showed ER effect, and the PIH/PDMS fluids show a little greater ER effect than the PIB/PDMS fluids. The PILC droplets in the ER fluids become deformed owing to both the orientation of fluorinated cholesteryl mesogens and the suppression of ionic migration when a DC electric field was applied, resulting in the occurrence of ER effect. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Facile organization of the inorganic sandwiched heteropolytungstomolybdate K13[Eu(SiW9Mo2O39)2] (E) into highly ordered supramolecular nanostructured materials by complexation with a series of cationic surfactants is achieved by the ionic self-assembly (ISA) route. The structure and phase behavior of the complexes were examined by IR spectroscopy, differential scanning calorimetry, optical microscopy, and small- and wide-angle X-ray scattering. This class of materials shows a number of interesting physicochemical properties, namely liquid-crystalline phases (both thermotropic and lyotropic) and strong photoluminescence. The photophysical behavior (fluorescence spectra, fluorescence lifetimes, fluorescence quantum yield) of the complexes differs widely in solid powders, films, and solutions. The amphiphilic cationic surfactants not only play a structural role but also have a strong influence on the photophysical properties of E. The photophysical behavior of E can in this way be easily modified by its organizational motifs.  相似文献   

10.
ABSTRACT

A series of novel star-shaped ionic liquid crystals (ILCs) compounds with various counterions (derived from HBF4, HPF6, CF3COOH, d-MH-SO3H, H3PO4, p-Toluenesulfonic acid) were designed and synthesised starting from precursors of pyridines and liquid crystalline monomer cholesteryl 4-bromobutanoate. Inducing various counterions by use of ionic self-assembly due to electrostatic attraction of various ion clusters was one of the most essential factors for intermolecular separation. The chemical structures, liquid crystalline properties, self-assembly behaviour and ionic conductivity of these compounds were researched during multiple experimental techniques. The star-shaped ILCs showed a smectic A (SmA) mesophase. The d-spacing of star-shaped ILCs increased slightly due to the increase volume of anion. The clearing temperatures of the pyridinium salts suggested that the effect of the stabilisation on the SmA structures was in the order H2PO4?>BF4?>TS?>D-MH-SO3?>CF3COO?>PF6?. All these star-shaped ILCs displayed ionic conductivity in mesophase. It was noted that the conductivity (σ) increased with the increase of the anion size and temperature.  相似文献   

11.
A series of 1‐alkyl‐3‐methylimidazolium fluorohydrogenate salts (CxMIm(FH)2F, x=8, 10, 12, 14, 16, and 18) have been characterized by thermal analysis, polarized optical microscopy, IR spectroscopy, X‐ray diffraction, and anisotropic ionic conductivity measurements. Liquid crystalline mesophases with a smectic A interdigitated bilayer structure are observed from C10 to C18, showing a fan‐like or focal conic texture. The temperature range of the mesophase increases with the increase in the alkyl chain length (from 10.1 °C for C10MIm(FH)2F to 123.1 °C for C18MIm(FH)2F). The distance between the two layers in the smectic structure gradually increases with increasing alkyl chain length and decreases with increasing temperature. Conductivity parallel to the smectic layers is around 10 mS cm?1 regardless of the alkyl chain length, whereas that perpendicular to the smectic layers decreases with increasing alkyl chain length because of the thicker insulating sheet with the longer alkyl chain.  相似文献   

12.
Replacement of the connecting CH2 group in ionic liquid crystal 1a[Pyr] with an oxygen atom in 1b[Pyr] resulted in significant destabilisation of the nematic and, to a greater extent, smectic A (SmA) phases, as established from binary mixture studies in 2a[Pyr]. Density functional theory (DFT) modelling of both anions suggests that the destabilisation results from the difference in charge distribution rather than conformational changes. Binary mixture studies demonstrated that all three ionic liquid crystals are compatible with a non-ionic benzoate nematic host 3a.  相似文献   

13.
In this work, we investigate the effect of morphology and segmental dynamics on ion transport in polymerized lyotropic liquid crystals (polyLLCs) containing 1-butyl-3-methylimidazolium tetrafluoroborate as ionic liquid (IL). We demonstrate that two important factors, which affect ion conduction in polyLLCs, are grain size and chain density at the interface. The polyLLC with large grain size (70 nm) shows significant reduction in ion conductivity (one order of magnitude) compared to its homopolymer/IL mixture. However, the polyLLC with small grain size (20 nm) has little difference in ion conductivity compared to its homopolymer/IL mixture. It is observed that decreasing the chain density enhances the interaction of IL with polymer chains and consequently slows the relaxation of polymer chains. In addition, comparing the dynamics of polymer chains in mixtures of homopolymer/IL and templated LLC mesophases shows that the confinement in LLC structure prolongs the relaxation of polymer chains.  相似文献   

14.
15.
The synthesis, structural, and retrostructural analysis of a library of self‐assembling dendrons containing triethyl and tripropyl ammonium, pyridinium and 3‐methylimidazolium chloride, tetrafluoroborate, and hexafluorophosphate at their apex are reported. These dendritic ionic liquids self‐assemble into supramolecular columns or spheres which self‐organize into 2D hexagonal or rectangular and 3D cubic or tetragonal liquid crystalline and crystalline lattices. Structural analysis by X‐ray diffraction experiments demonstrated the self‐assembly of supramolecular dendrimers containing columnar and spherical nanoscale ionic liquid reactors segregated in their core. Both in the supramolecular columns and spheres the noncovalent interactions mediated by the ionic liquid provide a supramolecular polymer and therefore, these assemblies represent a new class of dendronized supramolecular polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4165–4193, 2009  相似文献   

16.
17.
We report the shear-induced assembly of graphene oxide (GO) particles into periodic stripe-like patterns near the surface. These stripe-like patterns, which have an average periodic length of 100–250 μm, are aligned in a wavy manner along the normal to the flow direction. The self-assembled GO structures are investigated at different depths using three different analysis methods, namely, reflective microscopy observations of the photonic-crystalline GO dispersion, polarized optical microscopy, and fluorescence confocal laser scanning microscopy. The surface microstructures observed in reflection mode are different from the shear-induced band structures formed in bulk thermotropic liquid crystals and liquid crystal polymers, in terms of the shape and scale of the stripes. Further, there is also a difference in terms of the dependence of the stripe width on the shear rate. The observations suggest that the stripes are formed because of a competition between the stable surface-field-induced planar alignment of the GO particles near the surface and their relatively unstable shear-induced vertical alignment in the bulk. The findings of this study should advance our understanding of GO assembly under shear stress. Further, the proposed method is a novel one for inducing the assembly of GO particles into microstructures shaped as thread-like stripes.  相似文献   

18.
Orient and conduct: Triphenylene-based discotic ionic liquid crystals (ILCs) with six imidazolium ion pendants can disperse pristine single-walled carbon nanotubes (SWNTs). When the ILC is columnarly assembled, doping with SWNTs results in macroscopic homeotropic columnar orientation. Combination of shear and annealing treatments gives rise to three different orientation states, which determine the anisotropy of electrical conduction.  相似文献   

19.
The shear-induced band texture of conventional end-on fixed side group liquid crystalline polymers (LCPs) has been investigated by using polarizing optical microscopy (POM), small angle light scattering (SALS) and infra-red dichroism techniques. The band spacing is about 1 μm, which increases very slightly on increasing the temperature of shearing and is independent of shearing rate within the range studied. The band texture is not seen to exhibit an interchange of dark and bright bands on rotation of the sample with respect to the polarizer/analyser, but a typical periodical structure is reflected by the SALS patterns of the band texture. The relaxation behaviour of the bands indicates that the band texture formed here is the result of the orderly aligning of domains exhibiting the focal-conic texture, and this is totally different from the case of main chain LCPs where the band texture is substantially an optical effect of the periodic zigzag or sinusoidal structure of parallel aligned microfibrils. Infra-red dichroism and rotating parallel-plate shearing measurements show that the axes of the backbone of the polymer tend to orient in the shearing direction and the end-on fixed mesogenic side groups tend to align perpendicular to the shearing direction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号