首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of liquid crystals (LCs) as anisotropic solvents is desired for various potential applications and usually for other organic and inorganic compounds. In this work, solvent polarity parameters are obtained using a spectroscopic method for four LCs with a range of high and low dielectric anisotropy (?ε). Solvatochromic polarity parameters for these LCs were defined via Kamlet–Abboud–Taft polarity functions characterizing different temperatures and phases, isotropic and anisotropic, and using the Reichardt’s dye and 2,6-diphenyl-4-(2,4,6-triphenyl-1-pyridinio) phenolate standard probe. The investigated polarity parameters reveal the effects of LC media on the photo-physical behaviour of solute molecules in isotropic and anisotropic media. Subsequently, a new LC polarity parameter (Zo) is introduced as an overall matrix anisotropy polarity parameter to characterize variation between isotropic and anisotropic phases. The values of Zo are sorted from higher to lower dielectric anisotropies (?ε).  相似文献   

2.
The effects of the surface polarity of a glass substrate on the orientation of nematic liquid crystals (LCs) were studied using the polarised optical microscope and Fourier-transform infrared spectroscopy. On the surface of oxygen plasma treated glass, a homeotropic alignment of LCs was induced for LCs with negative dielectric anisotropy. This suggests that vertical orientation of LCs could be induced on a polar glass substrate without using an LC alignment layer. Upon cooling towards the isotropic–nematic transition, E7 with positive dielectric anisotropy changes its LC arrangement to isotropic, homeotropic, planar orientations in order. The nematic LC anchoring transition of E7 was interpreted by considering the competition between van der Waals forces and dipole interactions that control the alignment of LC molecules on a polar glass surface.  相似文献   

3.
Thermotropic ionic liquid crystals (LCs) are useful for a number of applications such as anisotropic ion transport and as organised reaction media/solvents because of their ordered fluid properties and intrinsic charge units. A large number of different ionic LC architectures are known, but only a handful of examples of gemini (i.e. paired or dimeric) ionic LCs have been prepared and studied. In this work, a series of 20 new symmetric, imidazolium-based, gemini cationic LCs containing two bridged imidazolium cations and two pendant alkyl chains was synthesised, and the thermotropic LC behaviours were characterised. The imidazolium unit provides a highly tunable and modular platform for the design and synthesis of gemini cationic LCs which offers excellent structure control. As expected, the thermotropic LC properties of these new amphilphilic, gemini ionic LCs were found to be strongly influenced by the length of the spacer between the imidazolium units, the length of the pendant alkyl tails, and the nature of the anion. Smectic A (SmA) thermotropic LC phases were observed in more than half of the gemini imidazolium LC systems studied.  相似文献   

4.
This work extends a recent EPR study on light-driven electron and energy transfer in a self-assembled zinc porphyrin-pyridylfullerene (ZnP-PyrF) complex. We report on a triplet line shape analysis of the photoexcited PyrF monomer and the ZnP-PyrF complex dissolved in isotropic and anisotropic matrixes of different polarity, namely, toluene, tetrahydrofuran (THF), and the nematic liquid crystals (LCs), E-7 and ZLI-4389. The line shape of the unbound *(3)PyrF obtained in both isotropic matrixes exhibits triplet parameters similar to those obtained for other monoadducts of C(60) under similar experimental conditions. On the other hand, 8(3)PyrF oriented in the LCs shows a complicated line shape, which is attributed to two conformers: (a) an axial dominant (85%) configuration characterized by triplet parameters, similar to those obtained in the isotropic matrixes and (b) a bent configuration associated with spin density localized about the poles accompanied by sign reversal of the ZFS parameter D of the *(3)C(60) moiety. Further, since in both LCs the ZnP-PyrF complex mainly exhibits a conformation with axial symmetry, the differences between the electron and the energy transfer routes in each LC are attributed to their different polarity. This study reflects the strength of LC matrixes to serve as a topological tool, enabling us to determine the conformers' distribution and to differentiate between electron and energy transfer routes.  相似文献   

5.
To understand the chromatographic process as a whole, whether it be for gas chromatography (GC), liquid chromatography (LC), or supercritical fluid chromatography (SFC), one needs to know the chemical and physical nature of the mobile and stationary phases and also the interactions that take place between analytes (solutes) and the two phases. An approach towards Investigating the ways that stationary and mobile phases contribute to chromatographic retention Involves exploring the effects of solvent polarity on the strength of the mobile phase. In SFC this could involve determining the polarity of several different modifier/carbon dioxide mobile phases. In this paper, the use of a solvatochromic indicator to learn more about the effects of SFC modifier/mobile phase polarity will be investigated and discussed using several different modifiers and a diolmodified silica column.  相似文献   

6.
A novel solvatochromic betaine dye has been synthesized from xanthosine and characterized spectroscopically by UV-vis in a broad range of solvents. The dye 9-(2',3',5'-tri-O-acetyl-beta-d-ribofuranosyl)-2-(pyridinium-1-yl)-9H-purin-6-olate, 1a, exhibits solvent-induced spectral band shifts that are (2)/(3) as large as that of the betaine known as Reichardt's dye, which forms the basis of the E(T)(30) solvent polarity scale. Moreover, the dye 1a is a ribonucleoside and hence has the potential application as a polarity probe for application in RNA oligonucleotides. The isomeric dye 6-(pyridinium-1)-yl-9H-purin-2-olate, 2a, has also been synthesized and exhibits slightly smaller solvatochromic band shifts. The new betaine dyes have also been studied by comparing the experimental and calculated solvatochromic shifts based on the calculation of the UV/vis absorption spectra, using a combination of methods with density functional theory (DFT). The COSMO continuum dielectric method, an applied electric field term in the Hamiltonian, and time-dependent density functional theory (TD-DFT) methods were used to obtain absorption energies, ground-state dipole moments, and the difference dipole moment between the ground and excited states. The calculations predict a lower energy absorption band of charge-transfer character that is highly solvatochromic, and a higher energy absorption band that has pi-pi character which is not solvatochromic, in agreement with the experimental data. For Reichardt's dye the difference dipole moment between the ground and excited state (Deltamu = mu(e) - mu(g)) was also calculated and compared to experiment: Deltamu(calcd) = -6 D and Deltamu(exptl) = -9 +/- 1 D.(1) The ground-state dipole moment was found to be mu(g)(calcd) = 18 D and mu(g)(exptl) = 14.8 +/- 1.2 D.(1).  相似文献   

7.
Light-driven electron transfer (ET) and energy transfer (EnT) in a self-assembled via axial coordination Zn-porphyrin-pyridylfullerene (ZnP-PyrF) complex were studied by time-resolved electron paramagnetic resonance (TREPR) spectroscopy at 9.5 GHz (X-band) and 95 GHz (W-band). The studies over a wide temperature range were carried out in media of different polarity, including isotropic toluene and tetrahydrofuran (THF), and anisotropic nematic liquid crystals (LCs), E-7 and ZLI-4389. At low temperatures (frozen matrices), photoexcitation of the ZnP donor results mainly in singlet-singlet EnT to the pyridine-appended fullerene acceptor. In fluid phases ET is the dominant process. Specifically, in isotropic solvents the generated radical pairs (RPs) are long-lived, with lifetimes exceeding that observed for covalently linked donor-acceptor systems. It is concluded that in liquid phases of both polar and nonpolar solvents the separation of the tightly bound complex into the more loosely bound structure slows down the back ET (BET) process. Photoexcitation of the donor in fluid phases of LCs does not result in the creation of the long-lived RPs, since the ordered LC matrix hinders the separation of the complex constituents. As a result, fast intramolecular BET takes place in the tightly bound complex. Contrarily to the behavior of covalently linked donor-acceptor systems in different LCs, the polarity of the LC matrix affects the ET process. Moreover, in contrast to covalently linked D-s-A systems, utilization of LCs for the coordinatively linked D-s-A complexes does not reduce the ET rates significantly.  相似文献   

8.
2-{[3-Cyano-4-(N-ethyl-N-(2-hydroxyethyl)amino)styryl]-5,5-dimethylfuran-2(5H)-ylidene}malononitrile styryl dye was prepared by the condensation of 4-[(2-hydroxy-ethyl)-methyl-amino]-benzaldehyde (donor moiety) with 2-cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (acceptor moiety). The corresponding design, synthesis and solvatochromic characteristics of the intramolecular charge-transfer (ICT) dye chromophore were discussed and determined. Optical properties such as absorption and fluorescence emission spectra were monitored in several solvent media with different polarity. In this determination, the prepared dye chromophore showed positive solvatochromism effect and the resulting solvatochromic characteristics were studied with semiempirical calculations. The energy potentials of this dye chromophore such as HOMO and LUMO values were calculated by computational simulation approaches using Material Studio 4.3. Furthermore, the functions as a molecular switching sensor with pH stimulation of alkali–acid addition were determined in DMSO, which was operated by deprotonation/protonation effects based on intramolecular charge-transfer system.  相似文献   

9.
A class of new ionic liquid (IL)‐based nonaqueous lyotropic liquid crystals (LLCs) and the development of an efficient IL extraction process based on LC chemistry are reported. The nonaqueous LLCs feature extraordinarily high extraction capacity, excellent separation selectivity, easy recovery, and biocompatibility. This work also demonstrates that the introduction of self‐assembled anisotropic nanostructures into an IL system is an efficient way to overcome the intrinsically strong polarity of ILs and enhances the molecular recognition ability of ILs. The distribution coefficients of IL‐based LLCs for organic compounds with H‐bond donors reached unprecedented values of 50–60 at very high feed concentrations (>100 mg mL?1), which are 800–1000 times greater than those of common ILs as well as traditional organic and polymer extractants. The IL‐based nonaqueous LLCs combining the unique properties of ILs and LCs open a new avenue for the development of high‐performance extraction methods.  相似文献   

10.
In this study, we report the design and the synthesis of a Schiff base; Anil and its corresponding Boron Difluoride complexe; Boranil. The synthesis procedure was carried out adopting new, optimized reaction conditions. The Boranil dye presents the advantage to be emissive in solution. 1H and 19F NMR along with FTIR confirmed both compound's structure. To gain a better understanding of the solvatochromic behavior of Anil and Boranil, the dependence of the absorption spectra on the solvent's polarity was studied in depth. Thus, UV–Vis spectroscopy was performed in five selected solvents. In addition to the solvent's polarity effect, the influence of BF2 moiety introduction on the molecule's photophysical properties was also evaluated. When examining different absorption spectra, we found that the title fluorescent dye exhibited weak solvatochromic (11 nm in THF) as well as a slight redshift broader and relatively more structured absorption spectra after complexation. Besides, we investigate the obtained key structure–property relationships through DFT and TD-DFT calculations using a 6–311++ G (d, p) basis set. Quantum chemical calculations allowed confirming proposed structures and understanding their electronic structure in larger details. Theoretical results also showed good agreement with the experimental findings. Finally, the frontier molecular orbitals were investigated to illustrate the pi-conjugation and charge transfer effect.  相似文献   

11.
Inorganic nanomaterials such as nanotubes and nanorods have attracted great attention due to their anisotropic properties. Although the alignment control of inorganic nanomaterials is key to the development of functional devices utilizing their fascinating properties, there is still difficulty in achieving uniform alignment over a large area with a micrometer thickness. To overcome this problem, we focused on liquid crystals (LCs) to promote the alignment of anisotropic nanomaterials, taking advantage of the cooperative motion of LCs. We present the uniform, one-dimensional alignment of ZnO nanorods along the direction of LCs in micrometer-thick cells by grafting nematic LC polymers from the nanorod surfaces to provide miscibility with the host LCs. Polarized optical microscopy and polarized UV–visible absorption spectroscopy revealed the unidirectional alignment of nematic LC polymer-grafted ZnO nanorods parallel to the nematic host LCs.  相似文献   

12.
We report on the emission spectra and emission quantum yields of a newly synthesized hypocrellin dye, Z‐demethoxy‐ 2,3‐ethylenediamino hypocrellin B (EDAHB), and its parent HB in different solvents of varying polarity. Our results demonstrate that EDAHB is one of the few dyes that exhibit highly solvent polarity‐dependent fluorescence in the useful region (680–730 nm). Therefore, it offers some applications in the biomedical field as a fluorescent probe molecule. The solvatochromic effect of EDAHB is proposed to be due to a distinct change in the dipole moment of the dye on excitation. A photoinduced intramolecular proton transfer and a photoinduced intramolecular electron transfer process are considered relevant for the fluorescence properties of HB and EDAHB, respectively.  相似文献   

13.
The kinetics of methylation of the solvatochromic dye 4‐[(2,4‐dinitrobenzyli‐dene)imino]‐2,6‐diphenylphenolate by dimethyl sulfate was investigated in three aqueous alcohols (1‐propanol, ethanol, and methanol), in the search of a sharp change in its reactivity in water‐rich media. The observed kinetic results paralleled previous observations of a sharp change in the solvatochromic behavior of the dye in the same media and was supported by a QM/MM simulation of the dye in two methanol–water mixtures, which rationalized the observed sharp change in the phenolate reactivity.  相似文献   

14.
A novel photosensitive polyimide, poly(4,4'-stilbenylene 4,4'-oxidiphthalimide) (ODPA-Stilbene PSPI) was newly synthesized. The most surprising feature of this PSPI is that the PSPI films irradiated with linear polarized ultraviolet light (LPUVL) can favorably induce a unidirectional alignment of liquid crystals (LCs) in contact with the film surface and further switch the director of the unidirectionally aligned LCs from a perpendicular direction to a parallel direction with respect to the polarization direction of LPUVL by simply controlling the exposure dose in the irradiation process. These LPUVL-irradiated films were found to provide high anchoring energy to LCs, always giving very stable, homogeneous cells with unidirectionally aligned LCs regardless of the LC alignment directions. In the films, the PSPI polymer chains were found to undergo favorably unidirectional orientation via a specific orientation sequence of the polymer chain segments led by the directionally selective trans-cis photoisomerization of the stilbene chromophore units in the backbone induced by LPUVL exposure. Such unidirectionally oriented polymer chains of the films induce alignment of the LCs along the orientation direction of the polymer chains via favorable anisotropic molecular interactions between the oriented polymer chain segments and the LC molecules. In addition, the PSPI has an excellent film formation processibility; good quality PSPI thin films with a smooth surface are easily produced by simple spin-coating of the soluble poly(amic acid) precursor and subsequent thermal imidization process. In summary, this new PSPI is the promising LC alignment layer candidate with rubbing-free processing for the production of advanced LC display devices, including LC display televisions with large display areas.  相似文献   

15.
This work deals with the design, synthesis, and characterization of a new solvatochromic dye. The intense solvatochromic behavior of this new synthesized non symmetric viologen was investigated using UV–Vis spectrophotometry. A further purpose was the study of the interactions between the solvent and solute molecules responsible for the solvatochromism. Several protic and aprotic solvents were used, and the resulting absorption maxima wavenumbers obtained via UV–Vis spectrophotometry, were correlated with the solvent polarity parameters, E T (30) (Dimroth–Reichardt solvent polarity parameter) and the Gutmann’s donor number (DN) using the biparametric model introduced by Krygowski and Fawcett. The analysis of the relative contribution of each parameter has clearly shown that the dominating interaction responsible for the solvatochromic behavior observed is the proton donation by the solute molecules to the solvent molecules, the latter acting as a Lewis bases. This is an interaction which can be described by DN. Additionally, the good correlation with the Kamlet–Taft parameter β is in good agreement.  相似文献   

16.
醇类溶剂溶剂化显色极性的理论分析   总被引:5,自引:0,他引:5  
邹建卫  俞庆森  商志才 《化学学报》2000,58(10):1247-1253
对一系列醇类溶剂分子进行了理论计算,运用多元线性回归分析方法从分子间相互作用的角度对四种溶剂化显色极性参数(E~T^N,π^*,Py和SPP)进行了理论分析。结果表明,对醇类溶剂而言,参数E~T^N和SPP实质上主要反映的是溶剂的氢键酸性性质;参数π^*中虽然包含了溶剂的极性因素,但同时与溶质-溶剂分子间的电荷转移相互作用有着密切的关系;而参数Py则较好地反映了溶剂的极性性质。  相似文献   

17.
The photophysical properties of 2‐phenyl‐naphtho[1,2‐d][1,3]oxazole, 2(4‐N,N‐dimethylaminophenyl)naphtho[1,2‐d][1,3]oxazole and 2(4‐N,N‐diphenylaminophenyl) naphtho[1,2‐d][1,3]oxazole were studied in a series of solvents. UV–Vis absorption spectra are insensitive to solvent polarity whereas the fluorescence spectra in the same solvent set show an important solvatochromic effect leading to large Stokes shifts. Linear solvation energy relationships were employed to correlate the position of fluorescence spectra maxima with microscopic empirical solvent parameters. This study indicates that important intramolecular charge transfer takes place during the excitation process. In addition, an analysis of the solvatochromic behavior of the UV–Vis absorption and fluorescence spectra in terms of the Lippert–Mataga equation shows a large increase in the excited‐state dipole moment, which is also compatible with the formation of an intramolecular charge‐transfer excited state. We propose both naphthoxazole derivatives as suitable fluorescent probes to determine physicochemical microproperties in several systems and as dyes in dye lasers; consequence of their high fluorescence quantum yields in most solvents, their large molar absorption coefficients, with fluorescence lifetimes in the range 1–3 ns as well as their high photostability.  相似文献   

18.
Empirical polarity parameters are recommended as useful characteristics for describing the internal and external surface properties of various solid materials, e. g. synthetic polymers, native polymers, inorganic oxides, sol‐gel hybrids, and composites. The polarity properties of a macromolecule have been expressed by three independent terms: the α value (the hydrogen bond donating, HBD, capacity or acidity), the β value (the hydrogen bond accepting, HBA, capacity or basicity), and the π* value (the dipolarity/polarizability). These terms can be defined using the Kamlet‐Taft solvents parameter set as the reference system. A complex property, XYZ, of a macromolecular material under study, with reference to a standard system (XYZ)0 (i. e. gas phase or a nonpolar polymer), can then be described by a simplified Kamlet‐Taft LSE (linear solvation energy) equation: XYZ = (XYZ)0 + sπ* + aα + bβ. a, b, and s are coefficients reflecting the susceptibility of the polarity terms upon XYZ. Empirical solvatochromic polarity parameters [α, β, π*, ET (30)] for synthetic polymers, copolymers, native polymers, inorganic oxidic materials, functionalized silica particles, hybrids, and composite materials have been determined by means of the following solvatochromic probe dyes: 2,6‐diphenyl‐(2,4,6‐triphenyl‐1‐pyridinio)‐4‐phenolate ( 1 a ), Michler's ketone ( 2 ), dicyano‐bis(1,10‐phenanthrolin)iron II ( 3 ), and a novel aminobenzodifuranone dye ( 7 ). The solvatochromic band shifts of these indicators correlate precisely with the Kamlet‐Taft solvent parameters α, β, and π*. The results are compared with each other, with related solvent model compounds, and literature values. The relation of the well established ET (30) solvent polarity scale to the Kamlet‐Taft parameters α and π* of solid materials is demonstrated. Hence, a general polarity scale for solid materials is suggested.  相似文献   

19.
For practical guest–host applications, it is important to choose dyes with a high ability of orientation in the liquid crystal (LC) matrix. In this experimental work, two different azo-structured dyes (disperse yellow 3 and 7) were separately doped to each of two different nematic LCs (E7 and ZLI-1132). Their solubilities, textures, phase transition temperatures and order parameters were determined. At the second stage, single-walled carbon nanotubes (SWCNTs) in a small amount were separately added to each of these solutions, and the experiments were repeated as similar to the previous ones. The solubilities of dyes in the LC E7 were lower than those of ZLI-1132. Moreover, the highest order parameter value was attained with yellow 7 dye in ZLI-1132 nematic host. Co-use of nanoparticles (CNTs) as dopant resulted in notable increases in order parameters. These dyes and CNTs did not significantly destabilise the mesomorphic phase of nematic hosts. An appreciable change in textures was not monitored with addition of dopant(s). In addition, it was observed that the narrowing on the temperature range of the LC did not take place with the addition of dopants to the crystal; on the contrary, an increase was recorded.  相似文献   

20.
Size- and aggregation-controlled dispersion of thin multiwalled carbon nanotube (t-MWCNT) in negative dielectric anisotropic liquid crystal (LC) material exhibits remarkable improvement in electro-optic response time in vertically aligned LC cells. The physical properties such as birefringence, dielectric anisotropy and clearing temperature of nanotube dispersed LC material appear to be almost invariant to that of pristine LC. Nevertheless, the response time shows noticeable improvement, especially in decaying time associated with transition from maximum to minimum transmission, hence important for faster switching LC devices. The effect is attributed to that vertically aligned t-MWCNTs along the field direction play role of vertical alignment layer between LCs, consequently resulting in increased bend elastic constant of LCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号