首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate a liquid crystal (LC) mode switched by mixed electric fields of in-plane and fringe fields, which are self-adjusted by adopting a bottom floating electrode for enhanced electro-optical properties. In our LC mode structure, conventional in-plane switching (IPS) electrodes are formed as pixel electrodes and common electrodes on an insulating layer and floating electrodes that are patterned per the sub-pixels. When the areas of the pixel and common electrodes are identical, the voltage of the bottom floating electrode is spontaneously determined to be half the value of the pixel voltage, which ideally generates symmetric fringe fields with both pixel and common electrodes. Due to the in-plane fields additionally generated between the pixel and common electrodes, the proposed LC structure operates by mixed-field switching (MFS), which shows higher transmittance than fringe-field switching (FFS) and IPS LC modes. Transmittance of the conventional FFS and IPS LC modes is highly sensitive to the in-plane electrode’s width (w) and spacing (l) condition, but the proposed MFS LC mode shows good transmittance without degradation with large variations of the in-plane electrode’s spacing-to-width ratio (l/w).  相似文献   

2.
In order to lower the saturation voltage and enhance the transmittance of in-plane switching blue-phase liquid crystal display (IPS-BPLCD), IPS-BPLCD with insulating protrusion is proposed. The single-protrusion (only set on the top of pixel electrode) and double-protrusion (set on the top of pixel and common electrodes) structures are investigated in this work. The potential distribution changes when the protrusion is used. There is a thicker transverse electric field in BPLC range, because the stronger electric field at the edges of the electrodes is decentralised into BPLC range. As a result, the saturation voltage is reduced from 36.3 V to 28.9 V when the double-protrusion structure is used, and transmittance is increased by ~20%. The contrast ratio is larger than 1000:1 in 60° viewing cone using a half-wave biaxial film. Both single-protrusion and double-protrusion structures have the uniform gamma curves at large oblique viewing angles. Moreover, the off-axis image distortion index is 0.1590 at 60º polar angle when zigzag electrodes are used.  相似文献   

3.
A single-cell-gap transflective polymer-stabilised blue-phase liquid crystal display with opposite polar pixel electrodes on an etched substrate is proposed. In the proposed structure, the space between common electrodes is adopted as transmissive region, and the space above the common electrode is adopted as reflective region. By optimising the electrode parameters of the transmissive and reflective regions, well-matched voltage-dependent transmittance and reflectance curves can be obtained. In addition, the device has good performances of low operating voltage (~3.2 V), high optical efficiency and a wide viewing angle.  相似文献   

4.
A blue-phase liquid crystal display (BPLCD) with low operating voltage and high transmittance is demonstrated by using a high dielectric material, which is used as an insulation layer or protrusion fixed on the pixel and common electrodes in in-plane switching (IPS) mode. The operating voltage is reduced to about 14 V and the transmittance is improved for the BPLCD with high dielectric constant protrusion. Compared with the conventional protrusion electrode structure, the proposed protrusion can make manufacturing process simple and easy because the electrode has no complex shape. The results will be significant in designing optimal BPLCDs.  相似文献   

5.
A single-cell-gap transflective liquid crystal display with a vertically aligned cell using square ring electrode is demonstrated. The top substrate has a top planar common electrode, a square ring pixel electrode is coated on the bottom substrate, while a bumpy reflector is coated under the bottom substrate. In this device, the planar common electrode and square ring pixel electrode generate a strong longitudinal electric field in the transmissive region (T region) and a weak fringe field in the reflective region (R region). As result, the T and R regions accumulate the same optical phase retardation. The simulation results show that the display exhibits reasonably low operating voltage, high transmittance and well-matched voltage-dependent transmittance and reflectance curves. Besides, fabrication process of the transflective liquid crystal display is very simple.  相似文献   

6.
Transmittance characteristics were studied as a function of cell gap for a homogeneously aligned liquid crystal (LC) cell driven by a fringe‐electric field—named fringe‐field switching (FFS) mode. The light efficiency of a conventional LC cell using in‐plane switching and twisted nematic modes, where the LC director is determined by competition between elastic energy and electrical energy, does not depend on cell gap as long as the cell retardation value remains the same; i.e. only dielectric torque contributes to the deformation of the LC director. However, the transmittance of the FFS mode is dependent on the cell gap such that it decreases as the cell gap decreases, although the cell retardation value remains the same. This unusual behaviour (unlike that of conventional LC cells) arises because in the device the elastic and dielectric torques have the role of determining the LC director, such that the driving voltage giving rise to maximum transmittance becomes strongly dependent on the electrode position when the cell gap is as small as 2?µm. In addition, the LCs at the centre of the pixel and common electrodes are not sufficiently twisted because of a competition between the two elastic forces, which tries to twist the LCs in plane and hold them in their initial state by surface anchoring.  相似文献   

7.
A transflective polymer-stabilised blue-phase liquid crystal display (BP-LCD) with alternate electrodes is proposed. The alternate electrodes are composed of right triangle electrodes and slanted electrodes. To balance the optical phase retardation between the transmissive (T) and reflective (R) regions, the legs of the right triangle electrodes in the T region generate uniform horizontal electric field, the hypotenuses of the right triangle electrodes and slanted electrodes in the R region generate uniform oblique electric field. As result, the T and R regions obtain the same optical phase retardation. This display exhibits reasonably high transmittance, low operating voltage, wide viewing angle and well-matched voltage-dependent transmittance and reflectance curves.  相似文献   

8.
In-plane field driven vertical alignment device using a liquid crystal with positive dielectric anisotropy has been studied. In the device, the distance between inter-digital electrodes needs to be increased to achieve higher transmittance; however, such a design results in an increase in operating voltage and slower response time. In this work, we use polymer stabilisation technique, which generates surface tilt angle other than 90o, to improve upon these drawbacks. As a result, the proposed device shows lower operating voltage and faster response time while keeping transmittance at the same level, compared to those prior to polymer stabilisation.  相似文献   

9.
The typical sidewalls produced in the fabrication of protrusion electrodes are proposed to create a low voltage (4.5 Vrms) and high transmittance (93%) blue-phase liquid crystal display (BP-LCD). The tilted electrodes produce a strong horizontal electrical field that reduces the operating voltage considerably. The common problem of the ‘dead zones’ is solved by reflecting the light onto the electrodes. In order to estimate the phase retardation of the reflected light, a ray tracing simulation program for anisotropic mediums has been developed. The proposed device is more competitive than vertical field switching based BP-LCD and also, has the advantages of protruded in-plane-switching structures. These facts make this technology a potential candidate for the next generation of BP-LCDs.  相似文献   

10.
《Liquid crystals》2012,39(12):1790-1798
ABSTRACT

A simple transflective liquid crystal display with a vertically aligned cell using a composite dielectric layer is demonstrated. The top substrate has a top planar common electrode, two transparent dielectric layers with different dielectric constants are coated on the bottom planar pixel electrode to generate linearly varying electric potential from the transmissive region (T region) to the reflective region (R region), while two bumpy reflectors are coated under the bottom substrate. In this device, with the composite dielectric layer, the common and pixel electrodes generate a strong electric potential in the T region and a relatively weak electric potential in the R region. Consequently, the T and R regions accumulate the same electro-optical characteristics. The simulation results show that the display exhibits reasonably low operating voltage, high optical efficiency and well-matched voltage-dependent transmittance (VT) and reflectance (VR) curves. Besides, the driving mode and the fabrication process of the transflective liquid crystal display are fairly simple and it is suitable for mobile applications.  相似文献   

11.
Measurements of the maximum transmittance of an in-plane switching liquid crystal display showed that it increases as rubbing angle is increased from 10 to 20°. This dependence was analysed in terms of the local variation of electric field intensity between electrodes, which in turn makes liquid crystal at various positions between the electrodes rotate to different angles. The local variation of electric field becomes prominent, especially in the case that the distance between the electrodes is much larger than the cell gap or electrode width.  相似文献   

12.
A polymer-stabilised blue-phase liquid crystal display (PSBP-LCD) with double-sided protrusion (DSP) electrodes structure is proposed. The oblique electric field between the protrusion electrodes inside both top and bottom glass substrates can induce more isotropic-to-anisotropic transition in the polymer-stabilised blue-phase liquid crystal (PS-BPLC) medium through Kerr effect than using the in-plane switching electrode. For the same electrode width, spacing and cell gap, the transmittance of PSBP-LCD with the DSP electrodes is ~29% higher than that using the IPS electrode.  相似文献   

13.
A low-voltage and high-transmittance blue-phase liquid crystal display (BPLCD) with concave electrodes is proposed. We use in-plane switching electrodes on the etched substrates to generate the concave electrodes. The proposed device can generate a strong in-plane field with a large horizontal component to increase the transmittance and reduce the operating voltage. As a result, a low voltage ~9 V and reasonably high transmittance ~71.7% can be achieved. Moreover, due to the generated multi-domain structures in the etched areas, this BPLCD can obtain a symmetric and wide viewing angle and the contrast ratio of 1000:1 is obtained over 60° viewing cone.  相似文献   

14.
A blue-phase liquid crystal display (BPLCD) with single–penetration (S-P) electrodes is proposed to reduce the operating voltage. X-shape inclined-electric field is induced by the S-P electrodes with 2 ~ 3 μm height, which can lower the operating voltage by ~45%, and improve the transmittance compared with BPLCD with conventional in-plane electrodes. Moreover, the wide viewing angle and very small image distortion index can be obtained in this structure with a half-wave biaxial film. The proposed structure shows simple etching control and easy one-drop filling process of blue-phase liquid crystal compared with dual-convex-penetration electrodes.  相似文献   

15.
We propose a homogeneously aligned liquid crystal (LC) cell with double-side protrusion electrodes for fast response and low-voltage operation. In the proposed device, both the bottom and top substrates have pixel electrodes to generate the fringe electric field. Because the penetration depth of the electric field is increased owing to the protrusion electrodes, the operating voltage is very low and the turn-on time is dramatically reduced compared with the conventional in-plane switching (IPS) mode. Moreover, LC molecules anchored strongly to the penetrated protrusion electrodes on both substrates exert a strong restoring force, resulting in a fast turn-off time. We found that the total response time of the LC cell with the proposed structure is three times faster than that of the conventional IPS mode.  相似文献   

16.
The linear viscoelastic properties of a suspension composed of titanium dioxide nanoparticles were measured under the direct current (dc) electric field with narrow gap distances between the electrodes. The yielding behavior under no external electric fields was also discussed. The wall slip at the interface between the parallel plates and the nano-suspension was briefly discussed. Under the dc electric field, a fine chain-like microstructure was optically found within a narrow gap of 50 μm between the electrodes in the quiescent state. The nano-suspension confined to a narrow gap of 65 μm between the parallel plates was rather viscoelastic even at the highest strength of the electric field of 16 kV·mm−1. Furthermore, fast and slow relaxations of the dynamic moduli were found after removal of the electric field. It was pointed out that the linear viscoelasticity was an appropriate measure of the microstructure before yielding.  相似文献   

17.
In situ optical observations were performed for suspensions composed of carbon nanoparticles under the sinusoidal electric field with an amplitude around 20 kV/mm (volt per micrometer) and various frequencies. For extremely diluted suspensions of mixed fullerenes or multiwalled carbon nanotubes (MWNTs) in a silicone oil, the dark-field optical microscopy was effective for the in situ observation of the particle behavior under the electric field. The nanoparticles in a fullerene suspension under the sinusoidal electric field with a frequency of 100 Hz (in short, 100 Hz electric field) were aggregated to form a rigid spherical microstructure around the halfway between the electrodes. On the other hand, the nanoparticles in an MWNT suspension under 100 Hz electric field were also aggregated but aligned to form a chain-like microstructure which spans the electrodes. Both of the aggregated particles were stable even after the removal of the electric field, and they were redispersed by application of 10 Hz electric field.  相似文献   

18.
The shape of aggregates of cells formed by positive dielectrophoresis (DEP) at interdigitated oppositely castellated electrodes under different conditions was investigated and compared with calculations of the electric field gradient |nablaE(2)|, and the electric field E, and E(2). The results confirm that at low field strength the cells predominantly accumulate above the tips of the electrodes, but at higher electric field strengths the cells predominantly accumulate in the middle of the aggregate. For a given electrode size, a higher applied voltage significantly increases the aggregate footprint. Higher flow rates distort this pattern, with more cells accumulating at the electrodes that are upstream. Calculation of the electric field strength E, E(2) and the electric field strength gradient |nablaE(2)| in the interdigitated oppositely castellated electrode array shows that, at low flow rates, there is a strong correlation between the aggregate shape and the distribution of the electric field E and E(2), but not so between the aggregate shape and |nablaE(2)|. The results indicate that interparticle forces such as pearlchain formation strongly affect the aggregation process, but that, when positive DEP is used to make the aggregates, the distribution of the electric field E, or better E(2), can be used as a useful guide to the final aggregate shape.  相似文献   

19.
A submillisecond response, wide view and single-cell-gap transflective (TR) display employing a blue-phase liquid crystal is proposed. The device employs polar opposite in-plane switching (IPS) electrodes. To balance the optical phase retardation between transmissive (T) and reflective (R) regions, the IPS electrodes are formed with unequal gaps in the two regions. This display exhibits reasonably high optical efficiency and well-matched voltage-dependent transmittance and reflectance curves.  相似文献   

20.
The dissociation of hydrogen sulfide has been studied in an atmospheric-pressure glow discharge rotating between concentric electrodes in an axial magnetic field. Though the electrodes were heated to remove the sulfur formed in the discharge, stable operation was possible. The characteristics of the discharge and the influence of experimental parameters on the conversion of hydrogen sulfide and the energy efficiency are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号