首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Isomerizable diacrylates derived from cinnamic acid are designed, synthesized and mixed with liquid crystalline diacrylates with the aim of making films with alternating birefringent and isotropic domains by applying the E-Z isomerization process at room temperature. The effects of the structure of the isomerizable-mesogenic group on the isotropization efficacy, the efficiency of the E-Z isomerization reaction, and film formation are discussed. Compounds derived from cyclohexyl cinnamate are proved to be good candidates that meet a whole set of parameters related to processing and application. These compounds exhibit a low nematic-to-isotropic transition temperature. In addition, they show no yellowing upon irradiation, unlike similar compounds derived from phenyl cinnamate. To elucidate the origin of isotropization of the film by irradiation, the pure Z-isomer is prepared by photolysis of the E-isomer and subsequent chromatographic separation of both isomers. Analysis of reference samples containing the pure isomers reveals that the decrease in transition temperature can be attributed exclusively to the E-Z photoisomerization process. Finally, thin films with alternating birefringent and isotropic parts of 100×100 µm2 are obtained by using a combination of photoisomerization in air and photopolymerization in a nitrogen atmosphere, which is referred to as photo-patterning.  相似文献   

2.
Potential energy surface (PES) for 1‐styrylnaphthalene was calculated by PM3 method for the S0 state and PM3‐CI(2x2) method with configuration interaction for the S1 state. Scanning PES along both isomerization and cyclization reaction coordinates enabled to reveal the minimum energy path (MEP) with low barriers on the S1 PES from E‐isomer to dihydrocyclophotoproduct (DHP). This is consistent with formation of the photocyclization product in one‐photon process during irradiation of E‐isomer. Additionally, the MEP was found to bypass the coordinate region of Z‐isomer, i.e. one‐photon E‐isomer‐to‐DHP photocyclization does not demand participation of the excited Z‐isomer. Therefore, adiabatic trans‐to‐cis isomerization is likely not an intermediate stage on the E‐isomer photocyclization pathway, and experimentally observed one‐photon formation of the DHP from the E‐isomer is likely not an evidence for adiabatic trans‐to‐cis photoisomerization, as it is usually assumed. According to the results obtained, two photochemical reactions of E‐isomer, photoisomerization to Z‐isomer and photocyclization to DHP, are not consecutive but parallel reactions with branching at perpendicular conformer on the S1 PES. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
We report the synthesis of two 2‐(4′‐pyridyl‐N‐oxide)‐substituted hemithioindigos (HTIs). We probed their photoisomerization by using UV/Vis and 1H NMR spectroscopy techniques. Light irradiation at λ=450 nm provoked the isomerization of the HTI Z isomer to the E counterpart to a large extent (≈80 % at the photostationary state). 1H NMR titration experiments revealed the formation of thermodynamically and kinetically stable 1:1 inclusion complexes of the (Z)‐HTI isomers with a super aryl‐extended host (association constant>104 m ?1). Photoirradiation at λ=450 nm of the inclusion complexes induced the isomerization of the bound HTI N‐oxide to afford the (E)‐HTI?calix[4]pyrrole complex. We determined accurate association constant values for the 1:1 inclusion complexes of the (Z)‐ and (E)‐HTI isomers by using isothermal titration calorimetry experiments. The results showed that the stability constants of the (E)‐HTI complexes were 2.2–2.8‐fold lower than those of the (Z)‐HTI counterparts, which explains the lack of light‐induced release of the former to the bulk solution.  相似文献   

4.
J. Lub  A. Ferrer  C. Larossa  B. Malo 《Liquid crystals》2013,40(10):1207-1218
Two chiral and isomerizable liquid crystalline diacrylates were synthesized. The purpose of these compounds was to tune the helical twisting power of cholesteric materials containing these compounds by means of an E–Z photoisomerization of the photoactive group derived from stilbene. The photochemical behaviour of these compounds was studied with the aid of two model compounds containing the same isomerizable mesogenic group. The mesogenic group derived from 4-(4-hydroxybenzoyloxy)-4′-hydroxystilbene decomposes upon irradiation. Its isomer, derived from 4-(4-hydroxyphenoxycarbonyl)-4′-hydroxystilbene, shows a clean E–Zisomerization. The HTP of the chiral diacrylate derived from the latter mesogenic group changes from 7 to 3 μm-1 in dilute nematic solution. Colour changes in a cholesteric material containing this compound were observed. The effect was very dependent on temperature and concentration due to the strong smectic character of this diacrylate.  相似文献   

5.
We report an efficient synthesis of cyclotris[(E)‐3′‐(biphenyl‐3‐yldiazenyl)] compounds (CTBs). An unsubstituted CTB molecule is accessible in four steps in 10 % yield overall, whereas a hexa(methoxymethyl ether) CTB analogue was prepared in nine steps (26 % yield). The final macrocyclization step was accomplished in up to 80 % yield by using a metal‐template effect. Furthermore, the photochromic properties were investigated, and all four isomers were detected and characterized by NMR spectroscopy. A strong influence from the solvent and the irradiation wavelength on the switching process was observed. Irradiation in pyridine yielded the highest amount of the all‐Z isomer in the photostationary state. For a full conversion to the all‐E isomer, the reaction has to be heated to 45 °C. The isomerization to the all‐E isomer is slow at room temperature, with a half‐life time of the all‐Z isomer of more than nine days in dimethyl sulfoxide (DMSO). Conditions were established to access each possible isomer as the major component in the photostationary state.  相似文献   

6.
7.
New phototriggered molecular machines based on cyclic azobenzene were synthesized in which a 2,5‐dimethoxy, 2,5‐dimethyl, 2,5‐difluorine or unsubstituted‐1,4‐dioxybenzene rotating unit and a photoisomerizable 3,3′‐dioxyazobenzene moiety are bridged together by fixed bismethylene spacers. Depending upon substitution on the benzene moiety and on the E/Z conformation of the azobenzene unit, these molecules suffer various degrees of restriction on the free rotation of the benzene rotor. The rotation of the substituted benzene rotor within the cyclic azobenzene cavity imparts planar chirality to the molecules. Cyclic azobenzene 1 , with methoxy groups at both the 2‐ and 5‐positions of the benzene rotor, was so conformationally restricted that free rotation of the rotor was prevented in both the E and Z isomers and the respective planar chiral enantiomers were resolved. In contrast, compound 2 , with 2,5‐dimethylbenzene as the rotor, demonstrated the property of a light‐controlled molecular brake, whereby rotation of the 2,5‐dimethylbenzene moiety is completely stopped in the E isomer (brake ON, rotation OFF), while the rotation is allowed in the Z isomer (brake OFF, rotation ON). The cyclic azobenzene 3 , with fluorine substitution on the benzene rotor, was in the brake OFF state regardless of E/Z photoisomerization of the azobenzene moiety. More interestingly, for the first time, we demonstrated the induction of molecular chirality in a simple monocyclic azobenzene by circular‐polarized light. The key characteristics of cyclic azobenzene 2 , that is, stability of the chiral structure in the E isomer, fast racemization in the Z isomer, and the circular dichroism of enantiomers of both E and Z isomers, resulted in a simple reversible enantio‐differentiating photoisomerization directly between the E enantiomers. Upon exposure to r‐ or l‐circularly polarized light at 488 nm, partial enrichment of the (S)‐ or (R)‐enantiomers of 2 was observed.  相似文献   

8.
Successful application of matrix‐assisted laser desorption/ionization (MALDI) MS started with the introduction of efficient matrices such as cinnamic acid derivatives (i.e. 3,5‐dimethoxy‐4‐hydroxycinnamic acid, SA; α‐cyano‐4‐hydroxycinnamic acid). Since the empirical founding of these matrices, other commercial available cinnamic acids with different nature and location of substituents at benzene ring were attempted. Rational design and synthesis of new cinnamic acids have been recently described too. Because the presence of a rigid double bond in its molecule structure, cinnamic acids can exist as two different geometric isomers, the E‐form and Z‐form. Commercial available cinnamic acids currently used as matrices are the geometric isomers trans or E (E‐cinnamic and trans‐cinnamic acids). As a new rational design of MALDI matrices, Z‐cinnamic acids were synthesized, and their properties as matrices were studied. Their performance was compared with that of the corresponding E‐isomer and classical crystalline matrices (3,5‐dihydroxybenzoic acid; norharmane) in the analysis of neutral/sulfated carbohydrates. Herein, we demonstrate the outstanding performance for Z‐SA. Sulfated oligosaccharides were detected in negative ion mode, and the dissociation of sulfate groups was almost suppressed. Additionally, to better understand the quite different performance of each geometric isomer as matrix, the physical and morphological properties as well as the photochemical stability in solid state were studied. The influence of the E/Z photoisomerization of the matrix during MALDI was evaluated. Finally, molecular modeling (density functional theory study) of the optimized geometry and stereochemistry of E‐cinnamic and Z‐cinnamic acids revealed some factors governing the analyte–matrix interaction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A new class of enantiopure ortho,ortho‐disubstituted azobenzene photoswitches has been synthesized from (S)‐2‐(p‐tolylsulfinyl)benzoquinone and arylhydrazines. The sulfoxide acts as a unidirectional controller of the helical chirality that arises in the Z isomer after photoisomerization. Highly congested E‐azobenzenes 5 c showed two atropisomeric diastereoconformers in the solid state that converged upon irradiation into a unique Z isomer with defined helicity (M), as evident in the X‐ray structure. The chiroptical properties of this three‐state enantiopure switch can be externally tuned both photochemically and/or thermally. Theoretical CD spectra calculated by using time‐dependent DFT methods support the existence of two atropoisomeric E isomers and only one Z isomer with (M) helicity. Complementary to the classical azobenzene‐based switches, the photoswiching event is promoted under green/blue light and do not occur under UV irradiation.  相似文献   

10.
Photochromic systems with an ultrahigh rate of thermal relaxation are highly desirable for the development of new efficient photochromic oscillators. Based on DFT calculations, we designed a series of 5‐phenylazopyrimidines with strong push–pull character in silico and observed very low energy barriers for the thermal (Z)‐to‐(E) isomerization. The structure of the (Z)‐isomer of the slowest isomerizing derivative in the series was confirmed by NMR analysis with in situ irradiation at low temperature. The substituents can tune the lifetime of thermal back isomerization from hundreds of microseconds to several nanoseconds (8 orders of magnitude). The photoswitching parameters were extracted from transient absorption techniques and a dominant rotation mechanism of the (Z)‐to‐(E) thermal fading was proposed based on DFT calculations.  相似文献   

11.
Sunitinib is an orally administered tyrosine kinase inhibitor. Therapeutic drug monitoring is an important component of the follow‐up of patients because of high interpatient variability in the pharmacokinetics of sunitinib and large variabilities in its efficacy and toxicity. The aim of the present study was to examine the light stability of sunitinib and confirm the effects of light exposure on sunitinib measurements by LC–MS/MS. Sunitinib and its active metabolite, SU12662, convert Z isomers to E isomers with exposure to light. The ZE photoisomerization ratio reached a plateau at 35% for both E isomers in methanol within 15 min of normal light exposure (700 lx). However, the Z isomer of the sunitinib and SU12662 peak area ratios in plasma decreased by 10% within 15 min. These results suggest that sunitinib samples need to be handled without light exposure in all sample preparation steps. Alternatively, it should be measured sunitinib and SU12662 after the sample has reached photoisomerical equilibrium. These results suggest that the sunitinib therapeutic range changes depending on light conditions during sample handling in sunitinib and SU12662 measurements.  相似文献   

12.
The structure of the E,E isomer of a butadienyl dye of the benzothiazole series containing a 15-crown-5 fragment was established by X-ray diffraction analysis. The stacking motif of the dye molecules in the crystal structure is, apparently, attributable to intermolecular -interactions between the large conjugated fragments. The possibility of [2+2] photocycloaddition occurring in the crystal is discussed. Reversible geometrical photoisomerization of the dye and its complex with Mg2+ in acetonitrile solution was studied by spectrophotometry and 1H NMR spectroscopy. Photoirradiation of the complex of the E,E isomer with Mg2+ leads predominantly to isomerization of the C=C bond adjacent to the benzothiazole fragment. Regioselective E,EZ,E photoisomerization occurs via a singlet mechanism with a quantum yield of about 0.45. The quantum yield of reverse Z,EE,E photoisomerization is approximately 0.52. The structures of different geometrical isomers of the dye complex with Mg2+ were calculated by the quantum-chemical density functional theory (DFT).  相似文献   

13.
Manufacturing machines converting energy to mechanical work at the molecular level is a vital pathway to explore the microscopic world. A kind of operable molecular engines, composed of β‐cyclodextrin (β‐CD), aryl, alkene and amide moiety was investigated using molecular dynamics simulations combined with free‐energy calculations. To understand how the integrated alkene double bond controls the work performed on the engines, two alkene isomers of the prototype were considered as two molecular engines. The free‐energy profiles delineating the binding process of the amide (Z)‐ and (E)‐isomers for each alkene isomer with 1‐adamantanol indicate that for the alkene (E)‐isomer, the apparent work performed on the amide bond is 1.6 kcal/mol, while the alkene (Z)‐isomer is incapable to perform work. Direct switch on/off of engines caused by the isomerization of the alkene bond was, therefore, witnessed, in line with experimental measurements. Decomposition of the free‐energy profile into different components and structural analyses suggest that the isomerization of the alkene bond controls the position of the aryl unit relative to the cavity of the CD, resulting in the difference among the free‐energy profiles and the stark contrast of the work performed on engines.  相似文献   

14.
Yujun Xie  Zhen Li 《化学:亚洲杂志》2019,14(15):2524-2541
Focused research on the Z/E isomers of tetraphenylethene (TPE) derivatives is scarce in comparison with the thousands of luminogens with AIE properties (AIEgens) that have been synthesized based on the TPE moiety. The similar chemical and physical properties of the Z/E isomers make them difficult to separate by using conventional chromatographic techniques. However, they can be isolated by introducing polar groups and the pure isomers exhibit very different photophysical properties, mechanochromism, and host–guest coordination, as well as assisting in deciphering the AIE mechanism. In this Minireview, we present an overview of the disagreement regarding the AIE mechanism between the restriction of intramolecular vibration and photoinduced Z/E isomerization. Then, we discuss the development of (Z)‐/(E)‐TPE derivatives, their use in host–guest detection, and their mechanoluminescence properties, with a focus on their photophysical characteristics. Finally, we explore the stereoselective synthesis of pure (Z)‐/(E)‐TPE derivatives.  相似文献   

15.
The molecule (E)‐(5‐(3‐anthracen‐9‐yl‐allylidene)‐2,2‐dimethyl‐[1,3] dioxane‐4,6‐dione) (E‐ AYAD ) undergoes EZ photoisomerization. In the solid state, this photoisomerization process can initiate a physical transformation of the crystal that is accompanied by a large volume expansion (ca. 10 times), loss of crystallinity, and growth of large pores. This physical change requires approximately 10 % conversion of the E isomer to the Z isomer and results in a gel‐like solid with decreased stiffness that still retains its mechanical integrity. The induced porosity allows the expanding gel to engulf superparamagnetic nanoparticles from the surrounding liquid. The trapped superparamagnetic nanoparticles impart a magnetic susceptibility to the gel, allowing it to be moved by a magnetic field. The photoinduced phase transition, starting with a compact crystalline solid instead of a dilute solution, provides a new route for in situ production of functional porous materials.  相似文献   

16.
A designed bis(dithienyl) dicyanoethene‐based, strictly E/Z photoswitch (4TCE) operates through state‐selective (E and Z isomer) photoactivation with visible light. The E and Z isomers of 4TCE exhibit remarkably different spectroscopic characteristics, including a large separation (70 nm) in their absorption maxima (λmax) and a 2.5‐fold increase in molar extinction coefficient from cis to trans. The energetically stable trans form can be completely converted to the cis form within minutes when exposed to white light, whereas the reverse isomerization occurs readily upon irradiation by blue light (λ<480 nm) or completely by thermal conversion at elevated temperatures. These features together with excellent thermal stability and photostability of both isomers make this new E/Z photoswitch a promising building block for photoswitchable materials that operate without the need for UV light.  相似文献   

17.
Semiempirical molecular orbital (PM3, PM6, and RM1) and density functional theory (DFT) (B3LYP/6‐31G*) studies are carried out for 1‐ and 2‐styrylnaphthalenes and their aza‐derivatives—2‐ and 4‐styrylquinolines. Relative stabilities of three isomeric forms: E‐ and Z‐isomers and the closed‐ring dihydrocyclophotoproduct (derivative of dihydrophenanthrene) are calculated. Compared to PM3, PM6 and especially RM1 understate heats of formation; in some cases, PM6 and RM1 even place Z‐isomer in energy below E‐isomer. PM3 rather close to DFT predicts heats of isomerization reaction, whereas PM6 and especially RM1 underestimate these values. Semiempirical methods in comparison with DFT markedly underestimate heats of cyclization reaction; however, reproduce trends in relative stabilities of different isomers in dependence on the structure of styrylnaphthalenes and styrylquinolines. Qualitative correlation is found between calculated relative stabilities of the closed‐ring forms (heats of cyclization reaction) and experimental data: cyclized products with low heats of cyclization are observed in steady‐state photolysis and those with high heats of cyclization are not. In the latter case, the closed‐ring compounds, if formed in the excited state, due to thermal instability decompose rapidly with ring opening in the ground state that prevents their observation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
The stereoselective preparation of vinylboronates via rhodium‐catalyzed borylation of E/Z mixtures of vinyl actetates is described, and this method was also extended to synthesis of vinyldiboronates. These transformations feature high functional group compatibility and mild reaction conditions. Control experiments support a mechanism that involved a Rh‐catalyzed borylation‐isomerization sequence. The isomerization of (Z)‐vinylboronates to (E)‐isomers was also demonstrated.  相似文献   

19.
O-Methyl-α-ketophenylacetohydroximoyl chloride ( 1 ) was prepared by the reaction of O-methyl-α-methoxyphenylacetohydroximoyl chloride ( 5 ) with N-bromosuccinimide and concentrated hydrobromic acid. Reaction of 1 with ethylenediamine gave 3-phenyl-5,6-dihydro-2(1H)-pyrazinone-O-methyloxime ( 6 ). 3-Phenyl-5,6-cyclohexano-5,6-dihydro-2(1H)-pyrazininone-O-methyloxime ( 7 ) was prepared by reaction of 1 with trans-1,2-diaminocyclohexane. The X-ray structure of 6 has been determined. The crystals are orthorhombic, space group Pbca with a = 10.264(3), b = 18.262(4), c = 23.530(4)Å, V = 4411(2)Å3, and Z = 16. The structure, which was refined to R = 0.038 using 1652 observed reflections, shows the amidoxime moiety to be the Z configuration. Reaction of benzohydroximoyl chloride with aziridine gave (Z)-aziridinylbenzaldoxime ( 16a ). Ultraviolet irradiation of a benzene solution of 16a gave a mixture of the Z and E isomers 16a and 16b . The E isomer 16b underwent thermal isomerization to 16a at 100°. Reaction of 16a with dimethyl sulfate in sodium hydroxide solution gave (Z)-O-methylaziridinylbenzaldoxime ( 17a ). Photoisomerization of a hexane solution of 17a gave a mixture of the Z and E isomers 17a and 17b which were separated by preparative glc. The isomers 17a and 17b are resistant to thermal Z = E isomerization. The mechanisms of thermal isomerization of benzamidoximes are discussed.  相似文献   

20.
The 1H, 13C and 15N NMR studies have shown that the E and Z isomers of pyrrole‐2‐carbaldehyde oxime adopt preferable conformation with the syn orientation of the oxime group with respect to the pyrrole ring. The syn conformation of E and Z isomers of pyrrole‐2‐carbaldehyde oxime is stabilized by the N? H···N and N? H···O intramolecular hydrogen bonds, respectively. The N? H···N hydrogen bond in the E isomer causes the high‐frequency shift of the bridge proton signal by about 1 ppm and increase the 1J(N, H) coupling by ~3 Hz. The bridge proton shows further deshielding and higher increase of the 1J(N, H) coupling constant due to the strengthening of the N? H···O hydrogen bond in the Z isomer. The MP2 calculations indicate that the syn conformation of E and Z isomers is by ~3.5 kcal/mol energetically less favorable than the anti conformation. The calculations of 1H shielding and 1J(N, H) coupling in the syn and anti conformations allow the contribution to these constants from the N? H···N and N? H···O hydrogen bondings to be estimated. The NBO analysis suggests that the N? H···N hydrogen bond in the E isomer is a pure electrostatic interaction while the charge transfer from the oxygen lone pair to the antibonding orbital of the N? H bond through the N? H···O hydrogen bond occurs in the Z isomer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号