首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of liquid crystalline polymers (LCPs) have been synthesised by two cholesteric monomers M1, M2 and a nematic monomer M3. The chemical structures and liquid crystalline properties of the monomers and polymers have been characterised by FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analyses, X-ray diffraction measurements and polarising optical microscopy. All LCPs show a high thermal stability with wide mesophase temperature ranges. For polymer P1 bearing only cholesteric LC monomers component, it shows a cholesteric phase, whereas others display a blue phase besides a cholesteric phase. The formation of the blue phase is based on the structures of the polymers and the produced biaxial helix. The glass transition temperature and isotropic temperature of the polymers decrease on heating cycle with increasing the content of M3 in the polymers. The specific rotation values of the polymers are temperature-sensitive. The reflection spectra of polymers P1P6 show that the maximum reflected wavelengths shift to long wavelength with increasing the content of M3 in the polymer systems. The frequency and intensity of the bands change sharply at the temperature where cholesteric phase changes to blue phase, but they show a weak dependence on temperature in the blue phase.  相似文献   

2.
A series of side-chain liquid crystal (LC) polysiloxanes were synthesised with Poly(methylhydrogeno)siloxane, 4?-(undec-10-enoyloxy) biphenyl – 4 – yl 4- (trifluoromethyl) benzoate (Mth) and a chiral nematic (N*) LC monomer 1-allyl 10-(cholesteryl)-decanedioate (Mch). The chemical structures and LC properties of the monomers and polymers were characterised by FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, POM and X-ray diffractometer. Mch is monotropic N* LC. The homopolymer derived from monomer Mch is enantiotropic N* LC. Monomer Mth is a smectic A liquid crystal. The copolymers derived from Mch and Mth are N* LCs. The temperatures at which 5% weight loss occurred are greater than 300°C for all the fluoro-containing polymers, and the residue weights of the samples at 600°C increased slightly as the content of trifluoromethyl mesogens increased in the polymers. The glass transition temperatures of the polymers increased as trifluoromethyl mesogens increased, too. The N*–I phase transition temperatures show a negative deviate from ideal or linear behaviour. The values of the enthalpy changes for the cholesteryl containing polymers are rather low and this is attributed to the biaxiality of cholesteryl moiety which tends to reduce the change in the orientational order at the N*–I transition. Compared to the monomers, the polymers show wider mesophase region.  相似文献   

3.
ABSTRACT

Two series of novel side-chain liquid crystal (LC) polysiloxanes grafted with chiral liquid crystalline dimers containing cholesteryl mesogens were synthesised. The chemical structure and LC properties of comonomers and polymers were characterised by FTIR, 1H-NMR, DSC, TGA, POM and XRD. M1 and M2 were chiral nematic (N*) dimers, and M3 was an achiral LC monomer displaying nematic mesophase in a narrow mesomorphic temperature range, while the copolymers exhibited N* mesophase whose mesomorphic temperature ranges were much wider than those of the comonomers. Moreover, the glass transition temperatures and isotropization temperatures of the polymers all decreased with decreasing the dimer components. Reflection spectra showed that Pa series tend to attain wide-band selective reflection at long wavelengths, while Pb series were more potential at short wavelengths with narrow bandwidths. Decreasing the dimer components led the wavelength of the selective reflection to blue shift, which was an abnormal phenomenon in chiral mixture system.  相似文献   

4.
ABSTRACT

In this study, we synthesised two series of cholesteric liquid crystal polymers CPQ and CPZ series. First, we prepared four different monomers ML1 containing a cholesteryl group, ML2 containing a cyano group, ML3 containing a phenolic hydroxyl group and ML4 containing isosorbide with azo groups. With the polymethylsiloxanes as the main chain, CPQ series were then synthesised by copolymerisation among the monomers ML1, ML2 and ML3 and CPZ series were synthesised by esterification between the CPQ series and the monomer ML4. 1HNMR and FT-IR spectra confirmed the chemical structures of all the monomers and polymers. The mesomorphic behaviours and thermal properties were investigated by TGA, DSC, POM and XRD. Both the CPQ and CPZ series exhibited excellent thermal stability and reversible phase transitions, as well as interesting Grandjean textures under POM. CPZ series showed higher optical activity than CPQ series due to the introduction of the isosorbide group and the azo group, which could tune the pitch to make Bragg selective reflection appear more easily. UV–Vis spectra investigated the photoresponse behaviours of CPZ series thoroughly.  相似文献   

5.
The synthesis is described of four new chiral liquid crystalline monomers (M2–M5 ) and their corresponding side‐chain homopolysiloxanes (P2–P5 ) containing menthyl groups. Chemical structures were characterised using FT‐IR or 1H NMR spectra, and specific optical rotations were evaluated with a polarimeter. The phase behaviour and mesomorphic properties of the new compounds were investigated by differential scanning calorimetry, thermogravimetric analysis, polarising optical microscopy, UV/visible/NIR spectrocopy and X‐ray diffraction. The monomers and homopolymers with more aryl segments showed noticeably lower specific optical rotation value. The monomers M2–M5 formed a cholesteric or blue phase when a flexible spacer was inserted between the rigid mesogenic core and the terminal menthyl groups by reducing the steric effect. M2–M5 revealed enantiotropic cholesteric phase. Moreover, M2 also exhibited a monotropic smectic A (SmA) phase, and M4 also exhibited a cubic blue phase on cooling. The selective reflection of light shifted to the long wavelength region with increasing rigidity of the mesogenic core for M2–M5 . P2–P5 exhibited SmA phases, and the mesogenic moieties were ordered in smectic orientation with their centres of gravity in planes. Melting or glass transition temperature and the clearing temperature increased, and the mesophase temperature range widened with increasing rigidity of the mesogenic core.  相似文献   

6.
A series of new chiral smectic liquid crystalline elastomers was prepared by graft polymerization of a nematic monomer with a chiral and non‐mesogenic crosslinking agent, using polymethylhydrosiloxane as backbone. The chemical structures of the monomers and polymers obtained were confirmed by FTIR and 1H NMR. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X‐ray diffraction. Monomer M 1 showed a nematic phase during heating and cooling. Polymer P 0 exhibited a smectic B phase; elastomers P 1P 3 showed the smectic A phase, P 4P 6 showed a chiral smectic C(SmC*), and P 7 displayed stress‐induced birefringence. Elastomers containing less than 15?mol?% M 2 displayed elasticity, reversible phase transitions with wide mesophase temperature ranges, and high thermal stability. With increasing content of the crosslinking unit, glass transition temperatures first increased, then fell, then increased again; isotropization temperatures and mesophase temperature ranges steadily decreased.  相似文献   

7.
A new homologous series of thermally stable thermotropic liquid crystalline poly(arylidene-ether)s based on 4-tertiary-butyl-cyclohexanone moiety was synthesised by solution polycondensation of 4,4′-diformyl-α,ω-diphenoxyalkanes, Ia–f, or 4,4′-diformyl-2,2′-dimethoxy-α,ω-diphenoxyalkanes, IIa–f, with the 4-tertiary-butyl-cyclohexanone monomer. A model compound III was synthesised from the monomer with benzaldehyde and characterised by elemental and spectral analyses. The inherent viscosities of the resulting polymers were in the range of 0.18–0.92 dL/g. The mesomorphic properties of these polymers were studied as a function of the diphenoxyalkane space length. Their thermotropic liquid crystalline properties were examined by differential scanning calorimetry (DSC) and optical polarising microscopy and demonstrated that the resulting polymers form nematic mesophases over wide temperature ranges. The thermal properties of those polymers were evaluated by thermogravimetric analysis and DSC measurements and correlated to their structural units. X-ray analysis showed that polymers having some degree of crystallinity in the region 2θ = 5–60°. In addition, the morphological properties of selected examples were tested by scanning electron microscopy.  相似文献   

8.
Chiral monomer (M1 ), mesogenic and non-mesogenic crosslinking agents (C1 and C2 ), and the corresponding liquid crystalline elastomers (P1 and P2 series), have been synthesised. Their chemical structures have been characterised by Fourier transform infrared or 1H nuclear magnetic resonance and their phase behaviour investigated by differential scanning calorimetry, polarising optical miscoscopy, thermo-gravimetric analysis (TGA) and X-ray diffraction. The effect of the crosslinking unit on the phase behaviour of the elastomers has been studied. M1 showed a cholesteric oily streak and focal conic texture. C2 exhibited a nematic enantiotropic thread-like and schlieren texture, and a monotropic fan-shaped texture in the SA phase. Due to the introduction of the mesogenic crosslinking unit, elastomers, P2-1 ?P2-5 , exhibited a cholesteric phase, while elastomers, P1-1 ?P1-4 , derived from a non-mesogenic crosslinking unit, exhibit a SA phase. As the content of the crosslinking unit increased, the T g of the P1 series initially decreased and then increased, and the T i of the series decreased. In the P2 series the T g increased, but the T i initially increased and then decreased. TGA confirmed that all the elastomers had improved thermal stability.  相似文献   

9.
A series of novel tetrad high aspect ratio mesogenic diol monomers 4-{[4-(n-hydroxyalkoxy)-phenylimino]-methyl}-benzoic acid 4-{[4-(n-hydroxyalkoxy)-phenylimino]-methyl}-phenyl ester were prepared with varying alkoxy spacer length (n=2,4,6,8,10) by reacting 4-formylbenzoic acid 4-formylphenyl ester and 4-(n-hydroxyalkoxy) anilines. Two series of thermotropic main chain liquid crystalline unsegmented polyurethanes (PUs) were obtained by the polyaddition of the mesogenic diols with hexamethylene diisocyanate (HMDI) and methylene bis(cyclohexylisocyanate) (H12MDI) in dimethylformamide respectively. The effect of the incorporation of a third component namely polyol on the liquid crystalline properties of the polyurethanes was also studied. Linear segmented PUs were synthesised by a two-step block copolymerisation method. The PUs synthesised were based on six spacer mesogenic diol chain extender, soft segments poly(tetramethylene oxide)glycol (PTMG) (Mn= 650,1000,2000) and polycaprolactone diol (PCL) (Mn=530,1250,2000) of varying molecular weights and different diisocyanates including HMDI, H12MDI and methylene bis(phenylene isocyanate) (MDI). Structural elucidation was carried out by elemental analysis, fourier transform infra red (FT-IR), nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopy. Inherent viscosity of the unsegmented polymers measured in methanesulphonic acid at 26°C was in the range of 0.13 - 0.65 dL/g while the molecular weights and molecular weight distribution of the segmented polyruethanes was determined using gel permeation chromatography (GPC). Mesomorphic properties were studied by differential scanning calorimetry (DSC) and hot stage polarising optical microscopy and the thermal stability was determined by thermogravimetric(TG)analysis. The monomeric diols and the polyurethanes exhibited nematic texture and good mesophase stability. It was observed that the partial replacement of the mesogenic diol by the polyol of varying molecular weights influenced the phase transitions and the occurrence of mesophase textures. The phase transition temperatures of the investigated polyurethanes showed dependence on the chain length of the soft segment and on the content of the mesogen moiety. A higher content of mesogenic moiety was needed to obtain liquid crystalline property when the soft segment length was increased as observed in the case of PTMG. Grained and threaded textures were observed depending on the molecular weight of the soft segment, the mesogen content and the diisocyanate. The stress-strain analyses showed that the polymers bused on high molecular weight PTMG soft segment have elastomeric property while the PCL based PUs displayed no elastomeric property.  相似文献   

10.
ABSTRACT

Four new liquid crystal cyclic carbonate monomers M1–M4, with cholesteryl moiety and flexible spacer of different lengths, were synthesised through coupling reaction. The chemical structures, mesophase properties and thermal behaviour of the monomers were characterised with Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy (1H NMR), polarising optical microscopy, differential scanning calorimetry and X-ray diffraction. Based on these results, the relationship between the number of methylene groups into flexible chain and the mesomorphism of the monomers was investigated. It was found that all the monomers showed a focal conic texture of a smectic A phase and exhibited an interdigitated molecular arrangement. Moreover, the glass transition temperature and the isotropisation temperature of the monomers except M1 decreased, and the mesophase range narrowed as the number of methylene units into the flexible chain increased.  相似文献   

11.
The synthesis of new chiral monomers (M1 ?M3 ) based on menthol and the corresponding polyacrylates (P1 ?P3 ) is described. The chemical structures, formula and phase behaviour of the obtained monomers and polymers were characterised with FT-IR, 1H-NMR, elemental analyses, differential scanning calorimetry (DSC), polarising optical microscopy (POM) and X-ray diffraction (XRD). The effect of the mesogenic core rigidity, spacer length and menthyl steric effect on the phase behaviour of M1 ?M3 and P1 ?P3 is discussed. The expected mesophase of the compounds based on menthol can be obtained by inserting a flexible spacer between the mesogenic core and the terminal groups. For the chiral monomers and polyacrylates, their corresponding melting temperature (T m), glass transition temperature (T g) and clearing temperature (T i) increased with an increase of the mesogenic core rigidity; while the T m, T g and T i decreased with increasing the spacer length. M1 and P1 showed no mesophase, while M2 and M3 all revealed a SmC* and cholesteric phases. P2 and P3 only showed a cholesteric phase.  相似文献   

12.
ABSTRACT

Twenty novel azobenzene liquid crystal micromolecular compounds named ω-[4-(p-substituted azobenzeneoxy carbonyl]acid (X-ABCnA) have been designed and synthesised, followed by studies on the thermal performance and mesomorphic properties of the compounds. The liquid crystal compounds were divided into five homologous series based on the terminal substituents R (R = CH3O, CH3, H, Cl, NO2). In each series, the number of carbons on flexible chain was 4, 6, 8 and 10, respectively. Fourier-transform infrared, proton nuclear magnetic resonance and elementary analysis demonstrated that the structure of the synthesised azobenzene liquid crystal compounds was consistent with the molecular design. The mesomorphic properties were tested, analysed and characterised by using differential scanning calorimetry and polarised optical microscopy. The melting transition (T m) of all the compounds in homologous series with different substituents appeared to decrease with the increase of carbon numbers on flexible chains. The same held true for the temperature of isotropic-mesophase/crystalline transition. The compounds with stronger polarity of terminal substituents were more likely to form broader mesogenic ranges. The liquid crystal compounds discussed in this work can be regarded as a reference for the synthesis of mesogenic arms participating in the synthesis of novel multi-arm liquid crystalline macromolecules and polymers.  相似文献   

13.
Abstract

Sidechain liquid-crystalline polymers were prepared by the derivatization of three poly(4-hydroxystyrene) fractions of different molecular weights (Mw = 1.0 × 104, 2.2 × 104 and 3.0 × 104). 4-Cyanoazobenzene and 4-cyanobiphenyl were incorporated as mesogenic groups with ether-linked methylene spacers of varying length. The polymers all exhibited a smectic A phase, with the exception of the propyl member of the cyanobiphenyl series for which no liquid-crystalline behavior was observed. For short spacers the thermal properties were insensitive to molecular weight changes in the backbone, whereas small but consistent differences in the transition temperatures and entropies were observed as the number of methylene groups in the spacer increased.  相似文献   

14.
A series of side-chain liquid-crystalline polymers, poly[N-(4-methoxyazobenzene- 4′-oxyalkyl)ethyleneimine](PEnZO), has been synthesised in which the number of methylene units in spacers varies from two to six. The structures of the synthesised monomers and polymers were confirmed by infrared (IR) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. The thermal properties of these polymers have been investigated using differential scanning calorimetry (DSC), polarising optical macroscopic (POM) X-ray diffraction and thermogravimetric analysis (TGA). The test results indicated that the obtained polymers exhibited thermotropic liquid-crystalline mesomorphism of nematic type with schlieren textures. It was observed that the thermal behaviours of the polymers were strongly dependent on the degree of substitution and the length of spacers. Polymers containing less than 57% of mesogenic groups did not exhibit mesogenic phase and resembled amorphous polymer. A more pronounced odd–even effect in the melting points and their enthalpy changes was observed on increasing the spacer length in which the odd members displayed lower values, which were also slightly dependent on the substitution degree of polymers. The mesomorphic temperature ranges of odd members were wider than those of even members. The decomposition temperatures of copolymers were near 230°C.  相似文献   

15.
Two new mesogenic homologous series of quinazolone derivatives have been synthesised by condensation of 4-n-alkoxybenzoyloxy benzaldehyde (for series I) / 4-n-alkoxy-3-methoxybenzoyloxy benzaldehyde (for series II) with 3-amino-2-methyl quinazolone in alcohol. The synthesised compounds are characterised by a combination of elemental analysis and standard spectroscopic methods. In series I, all the synthesised members exhibit the nematic mesophase. An enantiotropic smectic A phase is observed from the n-decyloxy derivative onward to the last homologue synthesised. Methoxy to n-propyloxy derivatives of series II are non-mesogenic, whereas the rest of the members exhibit a monotropic nematic mesophase. The mesomorphic properties of the present series I and II are compared with each other and with the other structurally related mesogenic homologous series to evaluate the effect of lateral methoxy substituent and quinazolone moiety on mesomorphism.  相似文献   

16.
A new cholesterol side-functionalised polycarbonate was synthesised through a coupling reaction between the terminal carboxyl group of the monomer 6-cholesteroxy-6-oxocaproic acid (COHA) and side hydroxyl group of the polycarbonate (PHTMC). The chemical structures of the intermediate compounds, monomers and polymers obtained in this study were characterised with FT-IR and 1H NMR spectrum. Their phase behaviour and thermal stability were investigated using polarising optical microscopy, differential scanning calorimetry, X-ray diffraction and thermogravimetric analysis. The monomer COHA showed a cholesteric phase, while the corresponding cholesterol side-functionalised polycarbonate P(TMC-g-COHA) revealed a smectic A phase. This behaviour was attributed to an increased density of the mesogenic units in side chain and hence an ordered organisation into the mesophase. Furthermore, P(TMC-g-COHA) could exhibit a liquid crystalline state below body temperature (≈37°C). This fact indicated it could be used clinically as a self-assemble material with orientational-order mesophase. In addition, P(TMC-g-COHA) had a good thermal stability, the corresponding thermal decomposition temperature was 241°C.  相似文献   

17.
New monomer cholesteryl 4-(10-undecylen-1-yloxybenzoyloxy)-4′-ethoxybenzoate (M1), crosslinking agent biphenyl 4,4′-bis(10-undecylen-1-yloxybenzoyloxy-p-ethoxybenzoate) (M2) and a series of side-chain cholesteric elastomers were prepared. The chemical structures of the monomers and elastomers obtained were confirmed by element analyses, FT-IR, and 1H NMR. The mesomorphic properties and thermal stability were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X-ray diffraction measurements. The influence of the content of the crosslinking unit on the phase behavior of the elastomers was examined. M 1 showed cholesteric phase, and M 2 displayed nematic phase. The elastomers containing less than 12 mol% of the crosslinking units revealed reversible mesomorphic phase transition, wide mesophase temperature ranges, and high thermal stability.  相似文献   

18.

New methacrylate monomers, 2‐{[(diphenylmethylene)amino]oxy}‐2‐oxoethyl methacrylate (DPOMA) and 2‐{[(1‐phenylethylidene)ami no]oxy}‐2‐oxoethyl methacrylate (MMOMA) were prepared by reaction of sodium methacrylate with diphenylmethanone O‐(2‐chloroacetyl) oxime and 1‐phenylethanone O‐(2‐chloroacetyl) oxime, respectively. They were obtained from a reaction of chloroacetyl chloride with benzophenone oxime or acetophenone oxime. The free‐radical‐initiated copolymerization of (DPOMA) and (MMOMA) with styrene (St) were carried out in 1,4‐dioxane solution at 65°C using 2,2‐azobisisobutyronitrile (AIBN) as an initiator with different monomer‐to‐monomer ratios in the feed. The monomers and copolymers were characterized by FTIR, 1H‐ and 13C‐NMR spectral studies. The copolymer compositions were evaluated by nitrogen content in polymers. The reactivity ratios of the monomers were determined by the application of Fineman–Ross and Kelen–Tüdös methods. The molecular weights (M¯w and M¯n) and polydispersity index of the polymers were determined by using gel permeation chromatography. Thermogravimetric analysis of the polymers reveals that the thermal stability of the copolymers increases with an increase in the mole fraction of St in the copolymers. The activation energies of the thermal degradation of the polymers were calculated with the MHRK method. Glass transition temperatures of the copolymers were found to decrease with an increase in the mole fraction of DPOMA or MMOMA in the copolymers. The antibacterial and antifungal effects of the monomers and polymers were also investigated on various bacteria and fungi. The photochemical properties of the polymers were investigated by UV and FTIR spectra.  相似文献   

19.
In this work we prepared a nematic monomer (4′‐allyloxybiphenyl 4′‐ethoxybenzoate, M1 ), a chiral crosslinking agent (isosorbide 4‐allyloxybenzoyl bisate, M2 ) and a series of new side chain cholesteric liquid crystalline elastomers derived from M1 and M2 . The chemical structures of the monomers and polymers were confirmed by FTIR and 1H NMR spectroscopy. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X‐ray diffraction. The effect of the content of the crosslinking unit on phase behaviour of the elastomers is discussed. Polymer P1 showed a nematic phase, P2 P7 showed a cholesteric phase; P6 formed a blue Grandjean texture over a broad temperature range 145–209.6°C, with no changed on the cooling. Polymers P4 P7 , with more than 6?mol?% of chiral crosslinking agent, gave rise to selective reflection. Elastomers containing less than 15?mol?% of the crosslinking units displayed elasticity, reversible phase transition with wide mesophase temperature ranges, and high thermal stability. Experimental results demonstrated that, with increasing content of crosslinking agent, the glass transition temperatures first fell and then increased; the isotropization temperatures and mesophase temperature ranges decreased.  相似文献   

20.
A series of novel thermotropic side chain liquid crystalline polymers was synthesized by grafting copolymerization of a mesogenic monomer, 4-allyloxybenzoyl-4′?-(4-n-alkylbenzoyl)–p-benzenediol bisate and a chiral monomer, menthyl undecylenate. The mesogenic monomers exhibited nematic threadlike textures during heating and cooling. The polymers showed thermotropic liquid crystalline properties with a broad mesomorphic region over a range of 100°C. The polymers exhibited a cholesteric mesophase with a colourful Grand-Jean texture when the content of chiral units was greater than 15?mol?%; the others exhibited nematic threadlike textures. All of the polymers were thermally stable over 300°C, and most were laevorotatory as the chiral monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号