首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A systematic study highlighting the effect of cadmium selenide quantum dots (CdSe QDs) with varying concentrations of 0.05, 0.10 and 1.0 wt% doping on the electrooptical and dielectric parameters of ferroelectric liquid crystal (FLC) is presented. No considerable change is observed in phase transition temperature and tilt angle with CdSe QDs doping at lower and higher dopant level. Substantial enhancement of localised electric field at higher doping level (1.0 wt%) of CdSe QDs manifested the ≈48% reduction in the switching response of FLC nanocolloids at 30°C. Reduction in the spontaneous polarisation, dielectric constant and absorption strength could be attributed to the antiparallel correlation among dopant and matrix molecules, ion capturing in the capping additive layer and enhancement of the rotational viscosity of the nanocolloids, respectively. Goldstone mode relaxation frequency is found to be decreased with doping up to 0.10 wt% concentration and showed reverse effect at higher QDs concentration. QDs doping effect on the photoluminescence intensity is also discussed.  相似文献   

2.
Nanocomposites comprise functionalised multi-walled carbon nanotubes (0.00 wt%, 0.05 wt% and 0.07 wt%) and ferroelectric liquid crystals (FLCs) have been studied in the 5-μm- and 12-μm-thickness cells. Effect of anchoring energy and dopant concentration on the mesomorphic, electro-optic and dielectric behaviour of FLC has been explored. Fast switching time and increase in permittivity of non-doped FLCs and resulting nanocomposites as a function of increased cell thickness (from 5 to 12 μm) can be attributed to the change in the anchoring energy and direct current (DC) conductivity of the non-doped and doped systems. π–π stacking between carbon nanotubes and FLC layers give rise to the spontaneous polarisation of nanocomposites. Effect of cell thickness and anchoring energy on bistability are also discussed.  相似文献   

3.
Nanocolloids consisting of a ferroelectric liquid crystal (FLC) doped with different concentrations (0.10 and 0.50 wt.%) of surface treated gold nanoparticles (GNPs) differing in size (1.77, 5.5 nm) are prepared and characterised. The effects of doping on the clearing temperatures as well as electro-optic and dielectric parameters of a FLC mixture are presented. The clearing temperatures remain invariant with doping. A remarkable increase in the spontaneous polarisation is noticed due to the addition of the GNPs with chiral monolayer capping. Tilt angle and switching time, at least in their tendency, become slightly reduced and increased, respectively. Depending on the size of the nanoparticles, surface plasmon resonance is observed to be slightly increased by increasing the surface. In addition, a small change in localised electric field is found upon doping. The increase in the dielectric permittivity and the dielectric strength is observed and attributed to the parallel coupling between the dipoles of functionalised GNPs, induced by external electric field, and the vector of the spontaneous polarisation of the FLC matrix. A decrease in relaxation frequency is observed. A substantial increment of one order in the dc conductivity is also observed for the nanocolloids.  相似文献   

4.
ABSTRACT

We are reporting on the interaction of zinc oxide (ZnO) nanoparticles (NPs) with the lyotropic phase comprises of Polyoxyethylene (20) sorbitan monolaurate and protic solvent ethylene glycol. The concentration of the NPs has been varying from 0.05 to 0.5 wt%. Multiwall lamellar and inverse phases have been observed at lower and higher concentration of ZnO NPs doping. Interestingly, the organization of ZnO NPs on the periphery and inside the periphery of ring-like structures has been observed at lower and higher concentration of the dopant, respectively. Such organization of the NPs can be explained considering interfacial interaction amid host and dopant and may also attribute to the adsorption mechanisms of surfactant. Effects of NPs doping on the dielectric dynamics has also been examined. About 32.6% decrease in the dielectric permittivity has been noticed at higher NPs doping. Such decrement in permittivity could be a result of the screening of the ZnO NPs dipole moment by the adsorption of surfactant molecules on their surface. Relaxation and optical parameters of the non-doped and doped mixtures have also been discussed.  相似文献   

5.
We report the investigation of influence of nickel zinc ferrite magnetic nanoparticles (NZFO (Ni0.5Zn0.5Fe2O4)) on phase transition, optical and dielectric properties in a nematic liquid crystal (NLC). The interaction of NZFO nanoparticles with NLC was confirmed by the formation of ferronematic droplets due to the transfer of magnetic orientational effect onto the underlying NLC matrix. The doping results in shift of nematic to isotropic transition to low-temperature region. An enhancement in the value of refractive index is observed in the nematic region after the addition of NZFO nanoparticles. The dielectric constant of NLC was remarkably enhanced by 10 times after doping, which is found to be maximum at 0.1 wt% concentration of NZFO nanoparticles. The decrease in the value of dissipation factor in low-frequency region shows that the magnetic nanoparticles are able to trap ionic impurities effectively. The obtained results suggest that the optimum amount of doping concentration is 0.1 wt% of NZFO nanoparticles in NLC due to high dielectric constant with low dissipation factor and high refractive index with high dispersive power at room temperature.  相似文献   

6.
The present investigation is focused on to find out the role of TiO2 nanoparticles (NPs) on altering the dielectric and electro-optical parameters of nematic liquid crystal (NLC). In addition to this, we also optimized the concentration of dopant (0.25 wt%) for a saturation value of permittivity and dielectric anisotropy in the doped system. Dielectric spectroscopy has been performed with the variation of frequency and temperature to investigate the various dielectric parameters, which demonstrate that the investigated NLC is of positive dielectric anisotropy; the observed result shows a decrement in the value of relative permittivity and dielectric anisotropy; however, the permittivity value increases for higher concentration of dopant but remains less than that of pure NLC. Electro-optical measurements have also been performed to compute the optical response of pure and dispersed NLC. It is found that optical response decreases for the NP-doped systems. This optimized concentration of NPs in NLC matrix can have various credential applications in the field of active matrix display and holography.  相似文献   

7.
聚乙烯咔唑(PVK)中掺入富勒烯(C60)的重量比从0%到10%变化,以研究在空穴传输层中掺杂C60后对量子点电致发光器件性能的影响。掺入C60后的PVK薄膜在氧化铟锡(ITO)基底上均方根粗糙度从3 nm降至1.6 nm。另外,掺入C60后有利于空穴的注入和传输,改善器件中电子和空穴的平衡,提高了器件的效率。  相似文献   

8.
聚乙烯咔唑(PVK)中掺入富勒烯(C60)的重量比从0%到10%变化,以研究在空穴传输层中掺杂C60后对量子点电致发光器件性能的影响。掺入C60后的PVK薄膜在氧化铟锡(ITO)基底上均方根粗糙度从3nm降至1.6nm。另外,掺入C60后有利于空穴的注入和传输,改善器件中电子和空穴的平衡,提高了器件的效率。  相似文献   

9.
By doping π-π systems with Li atom, a series of Li@sandwich configuration and Li@T-shaped configuration compounds have been theoretically designed and investigated using density functional theory. It is revealed that energy gaps (E gap) between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of all compounds are in a range of 0.4–0.9 ev. When Li atom is introduced into different sandwich configuration π-π systems (C60-toluene, C60-fluorobenzene, C60-phenol, C60-benzonitrile), Li@C60-benzonitrile exhibits considerable first hyperpolarizability as large as 19,759 au, which is larger by about 18,372–18,664 au than those of other compounds. When Li atom is introduced into different T-shaped configuration π-π systems (C60-pyridine, C60-pyrazine, C60-1, 3, 5-triazine, C60-pyridazine), Li@C60-pyridazine is found to present largest first hyperpolarizability up to 67,945 au in all compounds. All compounds are transparency in the deep ultraviolet spectrum range. We hope that this study could provide a new idea for designing nonlinear optical materials using π-π systems as building blocks.  相似文献   

10.
The influence of the highly fluorescent dopant, anthracene (over a concentration range from 5 × 10?4 to 1.2 × 10?2 mol dm?3) on the nonlinear optical properties and fluorescence intensity of potassium hydrogen phthalate (KHP) single crystals grown at 30 °C by a slow evaporation solution growth technique (SEST) has been investigated. Powder XRD and FTIR spectral analyses confirm the slight distortion of the structure of crystal because of doping. UV–Visible study shows that the transparency is not affected much by the dopant. The SEM investigation reveals that KHP suffers from crack development. Thermal analysis indicates that there is no decomposition of the crystal up to the melting point. It is interesting to observe that additions of small quantity anthracene to KHP results in the enhancement of fluorescence intensity. The fluorescence intensity dependence on dopant concentration is observed. Interestingly, second harmonic generation (SHG) efficiency of KHP is dramatically improved by doping with small quantities of anthracene.  相似文献   

11.
Colloids of elongated γ-Fe2O3 magnetic nanoparticles (NPs) in a ferroelectric liquid crystal (FLC) were studied. Decreasing the dielectric strength of the Goldstone mode and changing the value of Cole–Cole parameter were found in the suspensions. It was also shown that the effect of introducing magnetic particles into a FLC consists of increasing the electric field strength magnitude required for unwinding its helical structure. Effect of magnetic field on dielectric properties of the FLC colloid was also studied. Dielectric constant measured under static magnetic field is different for the FLC host and FLC doped with the NPs.  相似文献   

12.
Cd1?xZnxS/ZnS core/shell-structured quantum dot (QD)-doped ferroelectric liquid crystal (FLC) Felix 17/000 has been investigated in the present study. In the SmC* phase, the effect of QD on the dielectric and electro-optical properties of FLC has been studied as a function of dopant concentration. A substantial change in the different parameters like tilt angle, spontaneous polarisation, response time and relative permittivity has been observed for the composite system. Nearly two times faster response of the composite system with lower operating voltage is one of the promising results of the present study. The faster optical response along with the decreased value of spontaneous polarisation can be utilised in low power consumption liquid crystal displays.  相似文献   

13.
Density functional theory (DFT) calculations are performed for a representative set of low-energy structures of C60-n Si n heterofullerenes (n = 1, 2, 6, 12, 20, 24, 30) to investigate the effect of silicon doping on the electron structure of fullerene. The results show that chemical shielding (CS) parameters are so sensitive to the structural distortion made by outwardly relaxing silicon doped atoms from the fullerene surface which results in puckered Si-doped rings. As a result, the chemical shifts of the nearest carbon sites of silicon atoms considerably shift to downfield. Our survey shows that those first neighbors of silicon atoms which have minor 13C chemical shift belong to normal (un-puckered) rings. Meanwhile, the chemical shielding anisotropy (Δσ) parameter detects the effects of dopant so that Δσ values of the carbon atoms which are contributed to the Si–C bond are mainly larger than the others. Compensation between diatropic and paratropic ring currents lead to less negative NICS values at cage centers of Si-doped fullerenes than that of C60 except C58Si2-b and C54Si6-b in which more negative NICS values may be attributed to more spherical geometries of their carbon cages.  相似文献   

14.
Transition-metal dichalcogenides (TMDs) have promising properties for their use as catalysts of CO2 reduction to methane via the Sabatier reaction. In this article we use density-functional theory calculations to gain insight into the energetics of this reaction for Mo/W-based and S/Se-based TMDs with non-, Ni- and Cu-doping. We show that sulfur-based TMDs with Ni/Cu doping exhibit better indicators for catalytic performance of the CO2 reduction reaction than non-doped and doped TMDs without active sites. In addition, the role of the transition metal was found to a much smaller influence in the reaction than the role of the chalcogen and dopant atoms, which influence the bonding strength and type, respectively.  相似文献   

15.
The interaction of Fe2O3 nanoparticles emphasized between poly(propylene glycol) (PPG 4000) and silver triflate (AgCF3SO3) on the conformal changes of coordination sites and the electrochemical properties have been investigated. On the influence of Fe2O3 nanoparticles distribution, the interactions between the ether oxygen in C–O–C of the polymer chain with Ag+ ion as a result of bond strength of the C–O–C stretching vibration, the end group effect has been examined by Fourier transform infrared (FT-IR) spectroscopy. The formation of transient cross-links between polymer chains and filler particles appears to be a characteristic change in the glass transition temperature (T g) and enhance the effective number of cations as well. The strength of ion–polymer interactions was revealed by the transport of ions, t Ag+, and found to be in the range of 0.42–0.50, and the ionic conductivity was ascertained by complex impedance analysis with a maximum of 9.2?×?10?4 S cm?1 at 298 K with a corresponding concentration of 10 wt% Fe2O3 nanoparticles. The temperature dependence of conductivity has been examined based on the Vogel–Tammann–Fulcher (VTF) equation, thereby suggesting the segmental chain motion and free volume changes. From the impedance data, both the dielectric and modulus behaviours have been revealed and both were well correlated as a function of frequency.  相似文献   

16.
In the present study, ferromagnetic nickel nanoparticles (NiNPs) of size (~20 nm, 40 nm) into ferroelectric liquid crystal (FLC) mixture has been dispersed and investigated. Effect of size of NiNPs on the electro-optic, dielectric and optical properties of FLC mixture have been studied and discussed. A minor improvement in spontaneous polarisation, rotational viscosity and faster response time in NiNPs-FLC samples than pure FLC is noticed. Goldstone mode of relaxation frequency ~100 Hz is detected in all samples and follow a Debye type relaxation behaviour. In addition, it is observed that size of NiNPs does not have any remarkable effect on relaxation frequency and dielectric strength. A single absorption peak at 363, 362 Hz is also noticed in pure FLC and NiNPs-FLC samples.  相似文献   

17.
In the present study, magnetic nanoparticles (NP, nickel ferrite) in different concentrations into ferroelectric liquid crystal (FLC) mixture have been prepared and studied. The effect of nickel ferrite concentration on the electro-optic, dielectric and optical properties of FLC mixture has been studied and discussed. An improvement in spontaneous polarization, response time in nickel ferrite-FLC-doped samples compared to FLC is observed and explained on the basis of dipole moment and anchoring phenomena. The Goldstone mode (GM) is detected in all samples and follows a Debye-type relaxation behaviour. A twofold increase in relaxation frequency for the doped sample rather than the pure sample has been observed. The band gap was found more or less independent of doping concentration. The activation energy (Ea) also decreases on increasing the doping amount.  相似文献   

18.
Ca(1?3x/2)Nd x Cu3Ti4O12 (x = 0, 0.1, 0.2 and 0.3) powders and ceramics were prepared by sol–gel method. Effect of Nd on microstructure and dielectric properties were investigated. XRD patterns suggest that pure perovskite-like CCTO phase were obtained after calcining at 800 °C for 2 h. SEM pictures reveal that particle size monotonously decreases from 250 to 120 nm with increase of Nd concentration. The lattice parameters show an increasing trend with the enhancing amount of Nd3+ substitution. The average grain size of CCTO ceramics decrease from 2.0 to 0.8 μm with increase in Nd doping, which indicates that high concentration of Nd inhibits grain growth of CaCu3Ti4O12. Both of the dielectric constant and dielectric loss decrease with increase in Nd concentrations. Ca(1?3x/2)Nd x Cu3Ti4O12 ceramics with x = 0.3 shows the lowest dielectric constant of 1.12 × 104 as well as the lowest dielectric loss value of 0.12 at 20 °C(10 kHz).  相似文献   

19.
Nano-sized TiO2–60 wt% SrO composite powders were synthesized from titanium isopropoxide and Sr(OH)2·8H2O by use of a sol–gel method. Ag spot-coated TiO2–60 wt% SrO composite powders containing 3, 5, or 7 wt% Ag were synthesized by hydrothermal-assisted attachment, by use of Ag hydrosol in a high-pressure bomb at 250 °C and 450 psi. Nano-sized Ag particles approximately 5–25 nm in diameter adhered to the TiO2–60 wt% SrO2 composite powders. The photocatalytic activity of Ag spot-coated TiO2–SrO powders in the degradation of phenol showed that all were highly active when irradiated with UV light. TiO2–60 wt% SrO composite powder spot-coated with 5 wt% Ag was more photocatalytically active under visible light than TiO2–SrO composite powder.  相似文献   

20.
The frequency dependences of the electrophysical parameters (capacitance, dielectric constant, dielectric loss tangent, and resistivity) of polystyrene films doped with small (up to 1 wt % C60) additions of fullerenes were determined by dielectrometry. The composite materials obtained were concluded to be nonpolar. The dielectric constant as a function of the film composition passes through a minimum at 0.035 wt % C60. The polymer preserves good insulating properties on doping with fullerenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号