首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The mechanism for the formation and stabilization of acoustic bubble domains is investigated experimentally within the framework of the Akahane and Tako model which is based on the assumption of the formation of a system of defects in the layer of a cholestric liquid crystal, these defects pin the bubble domains. The theory takes no account of the interaction between bubble domains, this being valid in the case of a low density of domain packing. The correlation between the experimental results and theory is quite satisfactory, especially in the region of d/P 0 < 1.5 where the bubble domain packing density is very low (where d is the thickness of the cholestric layer and P 0 is the pitch of the helix).  相似文献   

2.
Solidified cholesteric films of α-helical poly(γ-methyl L -glutamate) and poly(γ-benzyl L -glutamate) were prepared by casting from solutions of the lyotropic cholesteric mesophase. Colored films can be prepared in this manner, so the cholesteric structure is retained with a pitch corresponding to a visible wavelength. Their iridescent colors can cover the full range of the visible spectrum, and the colors remain unchanged for years. Although the films are similar in optical properties to those of fluid cholesteric phases, the temperature dependence of the color is quite different. On stretching, the film undergoes a permanent deformation, and the iridescent color is shifted toward the blue. If t0 is the initial film thickness and Δt is the change in thickness after stretching the film, the relative change in pitch, ?ΔP/P0, of the cholesteric structure increases linearly with ?Δt/t0 in the range ?Δt/t0 > 0.10. This reduction of the pitch is attributed to a decrease in the number of pseudonematic layers in the span of one pitch, which may be interpreted in terms of delamination using an angle-ply model of the cholesteric structure.  相似文献   

3.
4.
Abstract

We describe the first successful attempt to produce amphiphilic cholesteric liquid crystals using a chiral quaternary ammonium surfactant, namely S-(?)-1-hexadecyl-1-methyl-2-pyrrolidinemethanol bromide. Only amphiphilic cholesteric liquid crystal samples were made where the micelle structure is related to disc shaped micelles in the achiral ND phase. The surfactant concentration dependence of the twist and the temperature dependence of the twist were made using laser diffraction. The twist in the amphiphilic cholesteric liquid crystal samples was too small to produce total iridescence.  相似文献   

5.
Structures with a periodic in-plane liquid crystal director field modulation induced by an electric field are studied in cholesteric liquid crystals (CLCs). A phenomenon of the electric-field-induced instability in a planarly aligned cholesteric cell is used to create these undulated structures. The initial field-off state is planarly aligned with the cholesteric helix axis oriented perpendicular to the cell substrates. The interaction of the CLC with an electric field results in modulation of the refractive index, which is visualised as stripe domains oriented either along or perpendicular to the rubbing direction at cell alignment surfaces. The threshold electric field for the undulation appearance and a period of stripes are measured experimentally for three Grandjean zones (ratio d/p ~ 0.5, 1.0, and 1.5, where d is a cell thickness and p is the natural cholesteric pitch). For the zone with d/p ~ 1.0 using numerical simulations, we describe in detail the director distribution at an applied electric field. It is found that the in-plane undulated structure is characterised by a conical director rotation on moving along the alignment direction. The conical axis is tilted with respect to the alignment axis. The sign of the tilt angle depends on the handedness of CLC.  相似文献   

6.
A series of liquid crystalline polymers (LCPs) have been synthesised by two cholesteric monomers M1, M2 and a nematic monomer M3. The chemical structures and liquid crystalline properties of the monomers and polymers have been characterised by FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analyses, X-ray diffraction measurements and polarising optical microscopy. All LCPs show a high thermal stability with wide mesophase temperature ranges. For polymer P1 bearing only cholesteric LC monomers component, it shows a cholesteric phase, whereas others display a blue phase besides a cholesteric phase. The formation of the blue phase is based on the structures of the polymers and the produced biaxial helix. The glass transition temperature and isotropic temperature of the polymers decrease on heating cycle with increasing the content of M3 in the polymers. The specific rotation values of the polymers are temperature-sensitive. The reflection spectra of polymers P1P6 show that the maximum reflected wavelengths shift to long wavelength with increasing the content of M3 in the polymer systems. The frequency and intensity of the bands change sharply at the temperature where cholesteric phase changes to blue phase, but they show a weak dependence on temperature in the blue phase.  相似文献   

7.
Linear thermal expansion coefficients (K) for co-cation solid electrolytes of three types are measured. The electrolytes include solid solutions (K1 – x Rb x )3.8Me0.1P2O7 (Me = Ca, Ba) with the structure of -K4P2O7 (I); fcc-solid solutions (A1 – x A" x )MO2–EO2 (A, A" = K, Rb, Cs; M = Al, Ga, Fe; E = Si, Ge, Ti) of -KFeO2 type (II); and tetragonal solid solutions 0.8(Li1 – x Na x AlO2) · 0.2TiO2 with the LiAlO2 structure (III). Dependences of K on the ratio of alkali cation amounts in I and II have a maximum, i.e. the polyalkali effect (PAE) of K is observed, while in III this dependence is practically linear (PAE of K is absent). The correlation is found between PAE of K and the electroconductivity of the electrolytes.  相似文献   

8.
9.
The synthesis of new chiral monomers (M1 ?M3 ) based on menthol and the corresponding polyacrylates (P1 ?P3 ) is described. The chemical structures, formula and phase behaviour of the obtained monomers and polymers were characterised with FT-IR, 1H-NMR, elemental analyses, differential scanning calorimetry (DSC), polarising optical microscopy (POM) and X-ray diffraction (XRD). The effect of the mesogenic core rigidity, spacer length and menthyl steric effect on the phase behaviour of M1 ?M3 and P1 ?P3 is discussed. The expected mesophase of the compounds based on menthol can be obtained by inserting a flexible spacer between the mesogenic core and the terminal groups. For the chiral monomers and polyacrylates, their corresponding melting temperature (T m), glass transition temperature (T g) and clearing temperature (T i) increased with an increase of the mesogenic core rigidity; while the T m, T g and T i decreased with increasing the spacer length. M1 and P1 showed no mesophase, while M2 and M3 all revealed a SmC* and cholesteric phases. P2 and P3 only showed a cholesteric phase.  相似文献   

10.
The experimental values of the L j components of the Lorentz tensor have been obtained for the first time for the quasinematic layer of the cholesteric phase and in the smectic phase A for homologs of cholesteric fatty ethers using the dispersion dependences of the refraction indices for the planar texture of cholesteric liquid crystals (CLCs). The dependence of the L j components on the homolog number, mesophase temperature, the magnitude of birefringence, and the change in the orientational ordering of molecules in the cholesteric phase and at the cholesteric-smectic A phase transition was determined. Isotropization of the Lorentz tensor L and the local field tensor f was found for CLCs when the birefringence of LCs and the anisotropy of molecular polarizability decreased simultaneously. The anisotropy Δf was found to be negative for the quasinematic layer of CLCs and the smectic phase in the visible range of the spectrum. The values of L j , obtained with known local field models for CLCs and smectics A, gave positive Δf irrespective of the chemical structure of molecules, optical anisotropy of LCs, and the spectral region, which contradicts to the experiment.  相似文献   

11.
The synthesis of two cholesteric monomers (M1 and M2), nematic crosslinking agent (C1 and C2), and the corresponding side-chain elastomers containing menthyl groups (P1 and P2 series) is described. The mesomorphism was investigated by differential scanning calorimetry, polarizing optical microscopy, X-ray diffraction, and thermogravimetric analysis. The effect of the content of the different nematic crosslinking unit on the mesomorphism of the elastomers was discussed. M1 and M2 showed cholesteric and blue phases; C1 and C2 showed nematic phase. Because of the introduction of the nematic crosslinking unit, elastomers P1-1−P1-5 and P2-1−P2-5 exhibited cholesteric phase. With increasing the content of nematic crosslinking unit, T g of the obtained elastomers revealed an increased tendency, and T i of P1 series firstly increased then decreased, while T i of P2 series decreased the mesomorphism of the corresponding elastomers when the content of nematic crosslinking unit was 12 mol.%.  相似文献   

12.
The shear rate dependence of material functions such as shear viscosity (η) and the first normal stress difference (N1) were given and interpreted earlier by Kiss and Porter. Their widely accepted work revealed the possibility of having a negative minimum of N1 for polymeric liquid crystals. In this work, we disclose for the first time the evidence of two negative N1 minima on a sheared cellulosic lyotropic system. The lower shear rate minimum is ascribed to the uncoiling of the cholesteric helix, as theoretically predicted earlier. Our findings contribute also to the understanding of the other minimum already reported in the literature and attributed to the nematic director tumbling mode. Moreover, the elastic change that the LC‐HPC sample undergoes during the helix unwinding of the cholesteric structure is also by means of oscillatory measurements. This study is a contribution for the understanding of the structure‐properties relationship linked with the complex rheological behavior of chiral nematic cellulose‐based systems and may help to improve their further processing. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 821–830  相似文献   

13.
Abstract

The director distribution in a supertwist nematic cell, containing La-Roche liquid crystal mixture 3010, has been studied extensively using Berreman's computer simulation approach. It is seen that the director distribution in the cell depends critically on the total twist angle θt, the surface tilt angle θo and the ratio of the cell thickness to the pitch d/p. The values of θo and φt have been optimized to yield a small bistability (ΔV = 0.06 V) and a relatively large change in the midplane tilt angle (Δθm = 51°) in an unstrained cell with ?t = (d/p) × 360°. The optimum values of θo and Øt were found to be 15° and 240°, respectively. The effect of varying d/p on the director distribution has also been studied in great detail in supertwist cells with θo = 30° and Øt = 270°. Some interesting features in understrained and overstrained cells have been observed.  相似文献   

14.
Chiral monomer (M1 ), mesogenic and non-mesogenic crosslinking agents (C1 and C2 ), and the corresponding liquid crystalline elastomers (P1 and P2 series), have been synthesised. Their chemical structures have been characterised by Fourier transform infrared or 1H nuclear magnetic resonance and their phase behaviour investigated by differential scanning calorimetry, polarising optical miscoscopy, thermo-gravimetric analysis (TGA) and X-ray diffraction. The effect of the crosslinking unit on the phase behaviour of the elastomers has been studied. M1 showed a cholesteric oily streak and focal conic texture. C2 exhibited a nematic enantiotropic thread-like and schlieren texture, and a monotropic fan-shaped texture in the SA phase. Due to the introduction of the mesogenic crosslinking unit, elastomers, P2-1 ?P2-5 , exhibited a cholesteric phase, while elastomers, P1-1 ?P1-4 , derived from a non-mesogenic crosslinking unit, exhibit a SA phase. As the content of the crosslinking unit increased, the T g of the P1 series initially decreased and then increased, and the T i of the series decreased. In the P2 series the T g increased, but the T i initially increased and then decreased. TGA confirmed that all the elastomers had improved thermal stability.  相似文献   

15.
Abstract

The temperature dependence of the induced helical pitch is reported for cholesteric and reentrant cholesteric phases of liquid crystal systems comprising 4-n-hexyloxy and 4-n-octyloxy-4′-cyanobiphenyl with a non-mesogenic optically active dopant. It was found that on adding small quantities of the dopant that the temperature range of the SA phase is narrowed and subsequently disappears, while short range smectic fluctuations persist, influencing the helical twisting features. Critical index values were determined from the temperature dependence of the pitch.  相似文献   

16.
Copolycondensations of (S,S)-2,5-bis(2-methylbutyloxy) terephthaloylchloride with 2,5-bis(dodecyloxy)terephthaloylchloride and with 4,4′-bistrimethylsiloxybiphenyl yielded a series of novel chiral thermotropic copolyesters. These polyesters were characterized by elemental analyses, inherent viscosities, 1H-NMR spectroscopy, optical rotations, optical microscopy, DSC measurements, and WAXS powder patterns recorded with synchrotron radiation under variation of the temperature. All homo- and copolyesters formed a solid sanidic layer structure with melting temperatures (Tm) ≥ 200°C. A broad enantiotropic nematic or cholesteric phase is formed above Tm with isotropization temperatures (Tis) in the range of 275–325°C. Yet, the Tm of the chiral homopolyester is so high (378°C) that the melting process is immediately followed by rapid degradation. The cholesteric phases of the copolyesters displayed unusual mobile schlieren textures, but a stable Grandjean texture was never obtained. Cholesteric domains consisting of loose bundles of more or less helical main chains are discussed as supramolecular order responsible for the observed textures and their pronounced temperature dependence. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 947–957, 1997  相似文献   

17.
New liquid crystalline monomer 4-(4-ethoxybenzoyloxy)biphenyl-4′-[(10-undecylen-1-yloxy)-4′-ethoxy]benzoate (M 1 ), chiral crosslinking agent isosorbide di-(10-undecylen-1-yloxybenzoate) (M 2 ), and the corresponding elastomers were prepared. The chemical structures of M 1 and M 2 were characterized by Fourier transform infrared and 1H-nuclear magnetic resonance. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X-ray diffraction measurements. M 1 exhibited typical threaded texture and droplet texture of nematic phase. The use of chiral crosslinking agent in the polymer networks could induce cholesteric phase. The elastomers containing less than 10 mol% of the chiral crosslinking units showed elasticity, reversible phase transition, wide mesophase temperature ranges, and high thermal stability. For the elastomers P 2 P 4 , the glass transition temperature (T g) increased; clearing temperature (T i) and mesophase temperature range (ΔT) decreased with increasing content of the crosslinking unit.  相似文献   

18.
Chain‐length‐dependent termination rate coefficients of the bulk free‐radical polymerization of styrene at 80 °C are determined by combining online polymerization rate measurements (DSC) with living RAFT polymerizations. Full kt versus chain‐length plots were obtained indicating a high kt value for short chains (2 × 109 L · mol−1 · s−1) and a weak chain‐length dependence between 10 and 100 monomer units, quantified by an exponent of −0.14 in the corresponding power law 〈kti,i〉 = kt0 · P−b.

Double logarithmic plots of 〈kti,i〉 versus P, evaluated from experimental time‐resolved Rp data according to the procedure described in the text, for different CPDA and AIBN concentrations. The best linear fit for (10 < P < 100) is indicated as full line.  相似文献   


19.
The permeation of oxygen dissolved in water through substituted polyacetylene membranes was studied by using an oxygen electrode at 25°C. Many of the membranes (thickness about 200 μm) showed high apparent permeability coefficients P in the range 10?9?10?8 cm3 (STP) cm cm?2s?1 cmHg?1. The resistance r of the boundary layer and the permeability P, at infinite membrane thickness were determined from the dependence of P on membrane thickness. The r values of Si-containing and aliphatic polyacetylenes were usually larger than those of aromatic polyacetylenes. The P, values of Si-containing and aliphatic polyacetylenes agreed closely with the permeability coefficients Pg for gaseous oxygen. In contrast, P values for aromatic polyacetylenes were larger than Pg values.  相似文献   

20.
ABSTRACT

The discovery of the oblique chiral (or, the twist-bend, NTB) nematic phase predicted for bent-core mesogens has engendered much interest due to its unique structure and physical properties, and the possibility of use in the next generation of fast electro-optic technology. Bimesogenic calamitic as well as bent-core mesogens are found to form the NTB phase. Here, we report direct measurements of the temperature dependence of the conical tilt and the evidence of volcano-like orientational distribution of molecules in the NTB phase. Optical and x-ray scattering investigations of two single-component calamitic bimesogens and their mixtures show that, while the Maier–Saupe orientational distribution function (ODF) is valid for the higher temperature nematic phase, a generalised expansion in terms of even Legendre functions is needed for the NTB phase. Temperature dependence of the ODFs and the order parameters 〈P2(cosβ)〉, 〈P4(cosβ)〉, and 〈P6(cosβ)〉 has been measured in both phases. The parameters 〈P2(cosβ)〉 and 〈P4(cosβ)〉 increase/decrease in the N/NTB phase with decreasing temperature, while 〈P6(cosβ)〉 remains vanishingly small for all samples. The value of 〈P4(cosβ)〉 becomes negative in the NTB phase confirming a conical distribution of molecules as they follow a helical trajectory keeping the local director tilted at an angle α wrt the macroscopic director. The heliconical tilt calculated from ODFs, exhibits a power law behaviour with temperature, vanishing at the transition to the N phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号