首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton and fluorine second moment and spin-lattice relaxation timesT 1 andT have been employed to study molecular dynamics in the comb-like I-6,6-16-Me-BF4 ionene in the temperature range from 110 up to 300 K. The existence of motions of methyl groups, trans-gauche isomerization, and/or rotation of the main- and side-chain méthylene groups, as well as isotropic reorientation of tetrafluoroborate ions were established. The observed relaxation behaviors are explained by motional models which assume Davidson-Cole asymmetrical distribution of correlation times. The best-fit motional parameters are given.  相似文献   

2.
Molecular dynamics of polycrystalline cellobiose studied by solid-state NMR   总被引:1,自引:0,他引:1  
Molecular motions of polycrystalline cellobiose have been investigated by measuring proton spin–lattice relaxation times, T1 and T, and the second moment, M2, in both protonated and D2O exchanged forms over the temperature range 120–380 K. T1 relaxation is dominated by the motions of hydroxyl groups between 150 and 380 K, characterised by an activation energy of about 8.74 kJ/mol, whereas T relaxation is driven by the motions of the same groups between 120 and 300 K. T results suggest that hydroxyl groups have a distribution of dynamics. Motion of methylene groups was detected in the second-moment experiments at about 350 K, characterised by activation energy of about 40 kJ/mol. Consideration of the calculated and observed rigid-lattice second moments suggests that the reported X-ray data are incorrect for the inter-proton distance on C6′. 13C CPMAS spectra of both protonated and deuterated cellobiose have also been measured. Spectra of the deuterated material showed the existence of a second crystalline form in addition to the normal form.  相似文献   

3.
N-decylammonium chloride is a polymorphic solid which exhibits a variety of layered phases. The molecular dynamics and phase transitions in these phases have been studied using2H NMR of selectively deuterated n-decylammonium in the chain positions 1 and 6 and in the ammonium group. Measurements were performed over the temperature range of the interdigitated phase I, the non-interdigitated monoclinic phase , the tetragonal phase , and the monotropic phase , obtained upon cooling the sample from the -phase. In phase I, below 321 K, the hydrocarbon chain is rigid except for ND3 rotation about its own symmetry axis. In phase , between 321 K and 325 K, a fast motion of the hydrocarbon chains is assigned to an exchange between two pairwise nonequivalent positions. The chains are slightly tilted in this phase. In phase above 325 K the chains rotate freely around their long axes experiencing additional transgauche conformational dynamics. In the non-interdigitated phase the spectra can be interpreted by assuming a reorientation between two variously occupied potential wells about the axis determined by the C-N bond, which is believed to be parallel to the normal bilayer axis.  相似文献   

4.
The relation between molecular dynamics and phase properties of the bilayered compound C12H25NH3C1 is studied by differential scanning calorimetry, proton second moment, and spin-lattice relaxation times. In the low-temperature phase I of the compound methyl and ammonium groups execute a classical threefold reorientation, while the alkylammonium chains are rigid on the nuclear magnetic resonance time scale. In the intermediate-temperature phase δ a trans-gauche isomerization of the alkyl chains is observed. In the high-temperature phase α the reorientation of the whole chains about their long axes, which are parallel to the normal to the ionic layer is evidenced. In the metastable ε phase the dynamics involves classical rotation of methyl and ammonium groups and CH2 groups motion of the trans-gauche isomerization type.  相似文献   

5.
Spin-lattice relaxation times T1 and T1d as well as NMR second moment were employed to study molecular dynamics of pyridoxine (vitamin B6) in the temperature range 10-350 K. The T1 minimum observed at low temperatures at 200 MHz is attributed to a motion of methyl group. The motion is interpreted in terms of Haupt's theory, which takes into account the tunneling assisted relaxation. At low temperatures, where T1 is temperature independent, occupation of the ground state only is assumed. A motion of proton of the hydroxyl groups or CH2OH groups probably provides additional mechanism of relaxation, in the high-temperature region.  相似文献   

6.
Spin–lattice relaxation times T1 and T1d as well as NMR second moment were employed to study the molecular dynamics of riboflavin (vitamin B2) in the temperature range 55–350 K. The broad and flat T1 minimum observed at low temperatures is attributed to the motion of two nonequivalent methyl groups. The motion of the methyl groups is interpreted in terms of Haupt's theory, which takes into account the tunneling assisted relaxation. An additional mechanism of relaxation in the high temperature region is provided by the motion of a proton in one of the hydroxyl groups. The Davidson–Cole distribution of correlation times for this motion is assumed.  相似文献   

7.
Proton second moment and spin-lattice relaxation times T1 and T1p in solid anhydrous beta-estradiol are measured as a function of temperature. The results show that the C3 reorientation of the single methyl group provides the mechanism dominating relaxation at low temperatures and reveal the existence of a conformational motion of the carbon skeleton dominating relaxation at high temperatures. The activation energies of the respective motions are found to be 9.3 and 37.3 kJ/mol.  相似文献   

8.
The 2H NMR magic-angle spinning (MAS) technique is compared to the static-powder quadrupole echo (QE) and Jeener-Brockaert (JB) pulse sequences for a quantitative investigation of molecular dynamics in solids. The linewidth of individual spinning sidebands of the one-dimensional MAS spectra are observed to be characteristic of the correlation time from approximately 10(-2) to approximately 10(-8) s so that the dynamic range is increased by approximately three orders of magnitude when compared to the QE experiment. As a consequence, MAS 2H NMR is found to be more sensitive to the presence of an inhomogeneous distribution of correlation times than the QE and JB experiments which rely upon lineshape distortions due to anisotropic T2 and T1Q relaxation, respectively. All these results are demonstrated experimentally and numerically using the two-site flip motion of dimethyl sulfone and of the nitrobenzene guest in the alpha-p-tert-butylcalix[4]arene-nitrobenzene inclusion compound.  相似文献   

9.
Molecular dynamics in n-dodecylammonium chloride/water solutions for concentrations of 34 and 45 wt% was studied by 2H NMR and by 1H NMR dispersion of spin-lattice relaxation in the 2 kHz-90 MHz frequency range. The system exhibits a number of lyotropic liquid crystalline phases, which differ in symmetry and involve motions characterized by a wide frequency scale. The analysis of 2H NMR lineshapes of selectively deuterated DDACl molecules gave us an evidence for local trans-gauche conformational changes in the chains, whereas the dispersion of spin-lattice relaxation times T1 explored by fast field cycling method revealed fast local motions, translational diffusion and collective molecular dynamics of the chains. In particular, we have found that the order director fluctuation mechanism in smectic and nematic phases dominates spin-lattice relaxation below 1 MHz and that local motions and translational diffusion are responsible for the spin-lattice relaxation in the higher Larmor frequency range.  相似文献   

10.
Nuclear magnetic resonance line shapes and spin-lattice relaxation timesT 1, of1H and2H nuclei of poly[(R)-3-hydroxybutyric acid] have been measured in the temperature range 100–413 K. The results provide information on the local dynamics of the compound. Activation parameters of the revealed motion are determined.  相似文献   

11.
The dynamics of hydrogen atoms in the hydrogen bonds of molecular dimers in dodecanoic acid (c phase) have been studied by quasi-elastic neutron scattering and pulsed nuclear magnetic resonance. Q-dependence measurements of the intensity of the quasi-elastic peak have established that the hydrogen atoms move along a line connecting the two oxygen atoms in the hydrogen bond. The correlation time for this motion has been studied by temperature dependence measurements of the width of the quasi-elastic line and of the proton spin-lattice relaxation time,T 1. These studies reveal the quantum mechanical nature of the dynamics in the low temperature region. The dynamical parameters which characterise the motion have been determined by fitting the data to a model which invokes phonon assisted tunnelling. The frequency dependence ofT 1 at low temperature is anomalous because the gradient of the ln(T 1) vs 1/T curve is dependent on the applied magnetic field.  相似文献   

12.
13.
Spin-lattice relaxation times T1 in solid pregnenolone have been studied over a wide range of temperatures, from 77 up to 417 K. The dynamic processes arising from C3 motion of the three methyl substituents are separated, and their activation parameters are determined.  相似文献   

14.
The molecular dynamics of poly(L-lactide) (PLLA) biopolymer was characterized through analyses of 1H and 2H NMR line-shapes and spin-lattice relaxation times at different temperatures. At low temperatures (e.g. 90 K), the methyl group rotation is dominant leading to a significant reduction in the proton second moment. Fast methyl group reorientation occurs at ca. 130 K. In additional to the fast methyl group rotation, hydroxyl groups start to reorient as the temperature increases further, eventually leading to the breakdown of the segments of the biopolymer chains above its glass transition temperature Tg of 323 K. The analyses of the 2H NMR line-shapes indicate that both the methyl and hydroxyl reorientations can be described by the so-called cone model, in which the former has three equilibrium positions with theta(C-D) = 70.5 degrees and phi = 120 degrees while the latter one exhibits two equilibrium positions with theta(O-D) = 78 degrees and phi = 180 degrees .  相似文献   

15.
Yusheng Liu  Yuxiao Wang  Jing Li 《Ionics》2016,22(9):1681-1686
Molecular dynamics simulations were carried to investigate the structure and dynamics of [BMIM][PF6] ionic liquid (IL) confined inside a slit-like Au metal nanopore with a pore size of 5.0 nm. The calculations show that the mass and number densities of the confined ILs are oscillatory; the solid-like high density layers are formed in the vicinity of the metal surface. The orientational investigation shows that the imidazolium ring of [BMIM] cations prefers to form a small tilt angle with the pore walls. Furthermore, the mean squared displacement (MSD) calculation indicates that the dynamics of confined ILs are remarkably slower than those observed in bulk systems. Our results suggest that the confinement of the Au nanopore can strongly affect the structural and dynamical properties of the confined ILs.  相似文献   

16.
Dielectric spectroscopy and neutron diffraction experiments in acetone have been performed in order to clarify the dynamical behavior and the structural changes associated to the unsolved thermal transition that takes place in the solid state around 130 K. The combination of dielectric experiments with neutron diffraction reveals the existence of a dielectric process in the stable crystalline phase of acetone. The evolution with temperature of the dielectric process, within the temperature range where the peak of the heat capacity was reported, supports that the transition is not of order–disorder type. The origin of the dielectric dispersion has been assigned to structural defects in the orthorhombic crystal phase of acetone.  相似文献   

17.
Spin-lattice relaxation times T1 and T as well as 1H NMR spectra have been employed to study the dynamics of the glass-forming di-isobutyl phthalate in the temperature range extending from 100 K, through the glass transition temperature Tg, up to 340 K. Below Tg NMR relaxation is governed by local dynamics and may be attributed to rotation of methyl groups at low temperatures and to motion of isobutyl groups in the intermediate temperature interval. Above Tg the main relaxation mechanism is provided by overall molecular motion. The observed relaxation behavior is explained by motional models assuming asymmetrical distributions of correlation times. The motional parameters obtained from Davidson-Cole distribution, which yields the best fit of the data at all temperatures are given.  相似文献   

18.
Simulations of QCPMG NMR type experiments have been used to explore dynamic processes of half-integer quadrupolar nuclei in solids. By setting up a theoretical approach that is well suited for efficient numerical simulations the QCPMG type experiments have been analyzed regarding the effect of the magnitude of the EFG- and CSA-tensors, the spin-quantum number, different dynamical processes and MAS. Compared to the QE experiment the QCPMG experiment offers not only intensity gain by an order of magnitude and changes in overall lineshape as a function of the kinetic rate constant but the lineshape of the individual spin-echo sidebands is also very sensitive towards dynamics. Hereby a visual identification of the dynamics is obtained. In common for all the simulations the spin-echo sidebands are narrow in the slow (k< or =10(2) Hz) and the fast (k> or =10(7) Hz) dynamic regime whereas they are broadened in the intermediate regime 10(3)< or =k< or =10(7) Hz. The maximum intensity of the spin-echo sidebands for two-site jumps is highly dependent on the type of anisotropic interactions involved and the type of QCPMG experiment. Hence, in the fast limit the maximum intensity was 140% of the initial intensity when significant CSA was present or under the QCPMG-MAS experiment compared to 89 or 71% for the static experiment influenced by the quadrupolar interaction only. For 3-, 4-, and 6-site jumps the maximum intensity in the fast limit reached up to 339% of the intensity in the static limit.  相似文献   

19.
The pressure and temperature dependence of 13C NMR of CO2 adsorbed in several porous materials was measured. For CO2 in activated carbon fiber (ACF), the spectrum observed in the pressure range from 0 to 10 MPa consisted of two lines. A very sharp peak at δ = 126 ppm was attributed to free CO2 gas and a broad peak at δ = 123 ppm was attributed to confined CO2 molecules in the micropores of ACF, although CO2 in microporous materials such as zeolites and mesoporous silica, gave only a single peak attributed to free CO2 gas. In the low-pressure region, the peak at δ = 123 ppm shifted to 118 ppm and a very broad peak with a line width of about 200 ppm appeared. This indicates that there are two kinds of CO2 molecules confined in ACF with different rates of molecular motion: one is undergoing isotropic rotation and the other is undergoing anisotropic motion, which rotates around an axis tilted by 30° from the molecular axis. This implies that small pockets with a characteristic diameter exist on the surface of the ACF micropore.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号