首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
This paper investigates the ability of the largest producer in an electricity market to manipulate both the electricity and emission allowances markets to its advantage. A Stackelberg game to analyze this situation is constructed in which the largest firm plays the role of the leader, while the medium-sized firms are treated as Cournot followers with price-taking fringes that behave competitively in both markets. Since there is no explicit representation of the best-reply function for each follower, this Stackelberg game is formulated as a large-scale mathematical program with equilibrium constraints. The best-reply functions are implicitly represented by a set of nonlinear complementarity conditions. Analysis of the computed solution for the Pennsylvania–New Jersey–Maryland electricity market shows that the leader can gain substantial profits by withholding allowances and driving up NO x allowance costs for rival producers. The allowances price is higher than the corresponding price in the Nash–Cournot case, although the electricity prices are essentially the same.We are grateful to two anonymous referees for their insightful comments that helped us improve the paper. This work is partially supported by NSF grants CS 0080577 and 0224817, by USEPA STAR grant R82873101-0, and by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract W-31-109-Eng-38. Any opinions or errors are the responsibility of the authors and not the sponsoring agencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号