首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The molecular ions of isomeric octanes retain their structural identity, while their alkyl fragments [CnH2n+1]+ (n = 3 to 7) isomerise to common structures prior to decomposition. Structures for [C6H13]+ and [C7H15]+ ions are proposed.  相似文献   

2.
The extent of isomerization of acyclic and cyclic gas phase radical cations of composition [C10H12]+˙ has been investigated by using collisionally activated dissociation spectroscopy. Both electron and charge exchange ionizaiton were employed to form the ions with various internal energies. The [C10H12]+˙ ions investigated consisted of ionized phenylbutenes, ring-substituted methyl derivatives of allylbenzene and phenylpropene, 1-methyl-2-isopropenylbenzene, benzylcyclopropane, phenylcyclobutane, tetralin and 1-methylindan. The 1-methylindan and tetralin radical cations are the most stable of the C10H12 isomeric radical ions. The [C10H12]+˙ formed from acyclic olefins having the double bond in conjugation with the aromatic ring retain the initial structure to a significant extent. However, ions derived from olefins with the double bond out of conjugation with the benzene ring preferentially cyclize to stable five- and six-membered cyclic ions. Ring opening of small-ring cyclic ions, such as ionized benzylcyclopropane and phenylcyclobutane, occurs, followed by ring closure to the tetralin radical cation.  相似文献   

3.
[CnH2n?3]+ and [CnH2n?4]+·(n = 7, 8) ions have been generated in the mass spectrometer from CnH2n?3 Br (n = 7, 8) precursors and from two steroids. The relative abundances of competing ‘metastable transitionss’ indicate (partial) isomerization to a common structure (or mixture of structures) prior to decomposition in most examples of all four types of ions. In contrast, [C8H10O]+· and [C8H12O]+· ions, generated from different sources as molecular ions and by fragmentation of steroids, do not decompose through common-intermediates.  相似文献   

4.
The slow unimolecular reactions of six isomers of [C7H16] are reported and discussed. These results are interpreted in terms of dissociation via complexes of incipient carbonium ions and the appropriate associated radical. In some cases, rearrangement of the incipient carbonium ion precedes or accompanies decomposition; such isomerization generally favours alkyl radical loss, relative to elimination of the corresponding alkane.  相似文献   

5.
Additional evidence for the rearrangement of the 1- and 3-phenylcyclobutene radical cations, their corresponding ring-opened 1,3-butadiene ions and 1,2-dihydronaphthalene radical cations to methylindenetype ions has been obtained for the decomposing ions by mass analysed ion kinetic energy spectroscopy (MIKES). The nature of the [C9H7]+ and [C10H8] daughter ions arising from the electron ionization induced fragmentation of these [C10H10] precursors has been investigated by collisionally activated dissociation (CAD), collisional ionization and ion kinetic energy spectroscopy. The [C9H7]+ produced from the various C10H10 hydrocarbons are of identical structure or an identical mixture of interconverting structures. These ions are similar in nature to the [C9H7]+ generated from indene by low energy electron ionization. The [C10H8] ions also possess a common structure, which is presumably that of the maphthalene radical cation.  相似文献   

6.
The mutual interconversion of the molecular ions [C5H6O]+ of 2-methylfuran (1), 3-methylfuran (2) and 4H-pyran (3) before fragmentation to [C5H5O]+ ions has been studied by collisional activation spectrometry, by deuterium labelling, by the kinetic energy release during the fragmentation, by appearance energles and by a MNDO calculation of the minimum energy reaction path. The electron impact and collisional activation mass spectra show clearly that the molecular ions of 1–3 do not equilibrate prior to fragmentation, but that mostly pyrylium ions [C5H5O]+ arise by the loss of a H atom. This implies an irreversible isomerization of methylfuran ions 1 and 2 into pyran ions before fragmentation, in contrast to the isomerization of the related systems toluene ions/cycloheptatriene ions. Complete H/D scrambling is observed in deuterated methylfuran ions prior to the H/D loss that is associated with an iostope effect kH/kD = 1.67–2.16 for metastable ions. In contrast, no H/D scrambling has been observed in deuterated 4H-pyran ions. However, the loss of a H atom from all metastable [C5H5O]+ ions gives rise to a flat-topped peak in the mass-analysed ion kinetic energy spectrum and a kinetic energy release (T50) of 26 ± 1.5 kJ mol?1. The MNDO calculation of the minimum energy reaction path reveals that methylfuran ions 1 and 2 favour a rearrangement into pyran ions before fragmentation into furfuryl ions, but that the energy barrier of the first rearrangement step is at least of the same height as the barrier for the dissociation of pyran ions into pyrylium ions. This agrees with the experimental results.  相似文献   

7.
The mechanism of the formation of [C7H8]+ ions by hydrogen rearrangement in the molecular ions of 1-phenylpropane and 1,3-diphenylpropane has been investigated by looking at the effects of CH3O and CF3 substituents in the meta and para positions on the relative abundances of the corresponding ions and on the appearance energies. The formation of [C7H8]+ ions from 1,3-diphenylpropane is much enhanced at the expense of the formation of [C7H7]+ ions by benzylic cleavage, due to the localized activation of the migrating hydrogen atom by the γ phenyl group. A methoxy substituent in the 1,3-diphenylpropane, exerts a site-specific influence on the hydrogen rearrangement, which is much more distinct than in 1-phenylpropane and related 1-phenylalkanes, the rearrangement reaction being favoured by a meta methoxy group. The mass spectrum of 1-(3-methoxyphenyl)-3-(4-trideuteromethoxyphenyl)-propane shows that this effect is even stronger than the effect of para methoxy groups on the benzylic cleavage. From measurements of appearance potentials it is concluded that the substituent effect is not due to a stabilization of the [C7H7X]+ product ions. Whereas the [C7H7]+ ions are formed directly from molecular ions of 1-phenylpropane and 1,3-diphenylpropane, the [C7H8]+ ions arise by a two-step mechanism in which the s? complex type ion intermediate can either return to the molecular ion or fragment to [C7H8]+ by allylic bond cleavage. Obviously the formation of this s? complex type ion, is influenced by electron donating substituents in specific positions at the phenyl group. This is borne out by a calculation of the ΔHf values of the various species by thermochemical data. Thus, the relative abundances of the fragment ions are determined by an isomerization equilibrium of the molecular ions, preceding the fragmentation reaction.  相似文献   

8.
The extent of isomerization of [C9H10] ions, with lifetimes of approximately 10?11 and 10?6 s has been investigated using field ionization, collisionally activated dissociation and charge stripping techniques. The [C9H10] ions which were investigated included the molecular ions of α-methylstyrene, β-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, indan, cyclopropylbenzene, allylbenzene and the product of water loss from 3-phenylpropanol. The field ionization spectra of all the C9H10 hydrocarbons were different indicating that isomerization to a common ion structure had not occurred to a measurable extent for ions with lifetimes of approximately 10?11 s. Collisionally activated dissociation and charge stripping results indicated that most of the [C9H10] ions continued to maintain unique ion structures (or mixtures of structures) at ion lifetimes of 10?6 s. Possible exceptions are the [C9H10] ions from allylbenzene and cyclopropylbenzene which gave indistinguishable collisionally activated dissociation and charge stripping spectra.  相似文献   

9.
Potential energy curves have been computed for [C2H6]2+ ions and the results used to interpret the conspicuous absence of these ions in 2E mass spectra and in charge-stripping experiments. The energies and structures of geometry-optimized ground-state singlet and excited-state triplet [C2H6]2+ ions have been determined along with energies for different decomposition barriers and dissociation asymptotes. Although singlet and triplet [C2H6]2+ ions can exist as stable entities, they possess low energy barriers to decomposition. Vertical Franck-Condon transitions, involving electron impact ionization of ethane as well as charge-stripping collisions of [C2H6]+ ions, produce [C2H6]2+ ions which promptly dissociate since they are formed with energies in excess of various decomposition barriers. Appearance energies computed for doubly-charged ethane fragment ions are in accordance with experimental values.  相似文献   

10.
[C13H9S]+, [C14H11]+, [C13H11]+ and [C8H7S]+ ions with unknown structures were generated from two [C14H12S]precursor ions by fragmentation reactions that must be preceded by extensive rearrangements. Ions with the same compositions, each with several initial structures, were prepared by simple bond-breaking reactions. Metastable characteristics were compared for each of the four types of ions. It was found than in all cases fast isomerization reactions occur prior to fragmentation, so that no information about the unknown ion structures could be obtained by comparison of the observed fragmentations of metastable ions.  相似文献   

11.
The [NO2C7H6]+ ions generated from m-alkylnitrobenzenes have been shown to be different in their decomposition from those generated from p-alkylnitrobenzenes, even when the alkyl group is methyl and the departing fragment a hydrogen radical. Thus, in these cases even molecular ions of relatively high internal energy do not reversibly ring-expand to cycloheptatriene structures. In addition, the [NO2C7H6]+ ions, assumed to be benzylic, do not ring-expand to nitrotropylium ions at internal energies sufficient to cause subsequent loss of NO or NO2 from the p- and m-isomers, respectively.  相似文献   

12.
Metastable abundance ratios have been measured involving four decomposition reactions of C3H6 radical cations formed from a variety of precursors. The ratios are quite similar in accord with extensive isomerization to a propene structure prior to fragmentation. Small, yet constant differences are observed for those C3H6 ions which have been shown to be formed as cyclic ions by ion cyclotron resonance studies. The differences are interpreted to reflect internal energy variations, which result because the initially formed ions have two different structures. The abundance ratios are shown to depend on ionizing energy, repeller voltage and accelerating voltage, but are independent of the degrees-of-freedom in the precursor as well as the number of steps necessary to produce the [C3H6] Despite small variations in metastable ratios, the classification of various [C3H6] ions can be achieved under a variety of conditions which affect the internal energy of the decomposing ions.  相似文献   

13.
The kinetics of formation of [C3H5]+[M ? CH3]+, [C3H4]+·[M ? CH4]+· and [C2H4]+·[M ? C2H4]+· from but-1-ene, cis- and trans-but-2-ene, 2-methylpropene, cyclobutane and methylcyclopropance following field ionisation have been determined as a function of time 20 (or 30) picoseconds to 1 nanosecond and at two points in the microsecond time-frame. The results are consistent with the supposition that at the shortest accessible times (20 to 30 picoseconds) the structure of the [C4H8]+· molecular ion qualitatively resembles that of its neutral precursor, but suggest that prior to decomposition within nanoseconds the various molecular ions (excepting cyclobutane where the processes are slower) attain a common structure or mixture of structures. Reaction pathways of the presumed known ion structures are delineated from the nature of decompostion at the shortest times.  相似文献   

14.
The ion [C3H5]+ generated in a chemical ionization source by a variety of methods, including protonation and charge exchange, exhibits a metastable peak for H2 loss which is two orders of magnitude weaker than that formed in an electron impact source. The stable [C3H5]+ ions generated by electron impact and chemical ionization undergo collision-induced dissociation to a comparable extent, both losing H2 by only one of the two competitive mechanisms observed for metastable ions. In contrast to the behavior of [C3H5]+, the molecular ions of p-substituted nitrobenzene, generated by charge exchange at high source pressure, yield composite metastable peaks for NO loss which are very similar in shape and intensity to those generated by electron impact. The contrasting behavior of the metastable ions extracted from high pressure ion sources in the two systems may be due to differences in the efficiencies of quenching of the ionic states responsible for fragmentation as metastable ions. It is noteworthy that the NO loss reactions require considerably lower activation energies than does the H2 loss reaction.  相似文献   

15.
[C8H16]+. molecular ions from alkenes and cycloalkanes differing in their skeletal con-figuration do not in general isomerise completely to a common structure, except for the molecular ion of n-propylcyclopentane, the structure of which is identical to that of the normal octene ions. In contrast, decomposing [CnH2n?1]+ fragments are completely or almost completely isomerised after a lifetime of a few μs.  相似文献   

16.
Appearance energies for [C7H7]+ and [C6H5]+ fragment ions obtained from methylphenol isomers were measured at the threshold using the electron impact technique. Different processes for the formation of the ions are suggested and discussed. Metastable peaks were detected and the kinetic energies released were determined. The results indicate that [C7H7]+ ions are formed from metbylpbenois with both benzyl and tropylium structures, whereas [C6H5]+ ions are formed with the phenyl structure at the detected thresholds. Kinetic energies released on fragmentation of reactive [ C7H7]+ and [C6H5]+ ions were used as a probe for the structure of the ions at 70 eV.  相似文献   

17.
The collisional activation (CA) and charge stripping (CS) mass spectra of the three [C3H4] isomers, allene, propyne and cyclopropene, are reported. The extent of isomerization among these ions prior to collisional excitation depends on their internal energy content, but is small. Each [C3H4] ion structure also can uniquely be generated via appropriate dissociative ionizations. Analysis of mixtures of [C3H4] (daughter) ion structures is, in general, not possible from CA and CS mass spectra alone but may be aided by appearance energy measurements.  相似文献   

18.
The origins and nature of the [C5H8]+? ions which form the base peak in the electron impact spectrum of limonene, at nominal electron energies greater than 11 eV, have been investigated. Linked scan techniques were used to study unimolecular and collision induced fragmentation reactions. No fragmentation pathway leading to [C5H8]+? could be found. Measurement of ionization efficiency curves indicated that the threshold for formation of C5H8[+?] lies above the range of internal energies deposited in incident ions by collisional activation. By a combination of comparisons of collisionally activated spectra and energetic considerations, the [C5H8]+? ions formed from limonene were shown to resemble those of the molecular ion of isoprene, while the neutral fragment is most likely isoprene also. Deuterium labelling experiments yielded evidence of extensive scrambling prior to fragmentation. The most probable mechanism of formation of [C5H8]+? appears to involve a retro Diels–Alder reaction of a structurally intact molecular ion of limonene.  相似文献   

19.
Collisional activation spectra of [C8H8]+·, [C8H8]2+, [C6H6]+· and [C6H5]+ ions from fifteen different sources are reported. Decomposing [C8H8]+· ions of ten of these precursors isomerise to a mixture of mainly the cyclooctatetraene and, to a smaller extent, the styrene structure. Three additional structures are observed with [C8H8]+· ions from the remaining precursors. [C8H8]2+., [C8H8]+·, [C6H6]+· and [C6H5]+· ions mostly decompose from common structures although some exceptions are reported.  相似文献   

20.
[C2H5S]+ ions (m/e 61) with different initial structures were generated in the mass spectrometer from twelve precursor ions. Abundance ratios of competing metastable ion decompositions were used to determine whether these ions decompose through the same or different reaction channels. It was concluded that all [C2H5S]+ ions isomerize to a common structure or mixture of structures prior to decomposition in the first field free region. From 13C labelling experiments it was concluded that [C2H5S]+ ions generated from the molecular ions of 2-propanethiol-2-[13C], partially rearrange to a symmetrical structure before decomposition to [CHS]+ and CH4, whereas in [C2H5S]+ ions generated from the the molecular ions of 1,2-bis-(thiomethoxy-[13C]) ethane, the two carbon atoms become fully equivalent before CH4 loss occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号