首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A direct synthetic route leading to titania particles dispersed on nonporous spherical silica particles has been investigated; 5, 10, and 20% (w/w) titania/silica sols mixtures were achieved via hydrolyzation of titanium tetra-isopropxide solution in the mother liquor of a freshly prepared sol of spherical silica particles (St?ber particles). Titania/silica materials were produced by subsequent drying and calcination of the xerogels so obtained for 3 h at 400 and 600 degrees C. The materials were investigated by means of thermal analyses (TGA and DSC), FT-IR, N(2) gas adsorption-desorption, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM). In spite of the low surface area (13.1 m(2)/g) of the pure spherical silica particles calcined at 400 degrees C, high surface area and mesoporous texture titania/silica materials were obtained (e.g., S(BET) ca. 293 m(2)/g for the 10% titania/silica calcined at 400 degrees C). Moreover, the materials were shown to be amorphous toward XRD up to 600 degrees C, while reasonable surface areas were preserved. It has been concluded that dispersion of titania particles onto the surface of the nonporous spherical silica particles increase their roughness, therefore leading to composite materials of less firm packing and mesoporosity.  相似文献   

2.
Herein, a facile strategy which is based on Stöber method was presented in the preparation of sol–gel that contains silica nanoparticles with tunable diameter adopting small organic tertiary amine including trimethylamine, triethylamine and tri-n-propylamine (TPA) as the catalysts. The size of the resulting silica particles decreased sharply with extending the length of alkyl chain bonded on tertiary amine. The sub-10 nm silica nanoparticles were prepared while employing TPA as basic catalyst. Silica particles were characterized by transmittance electron microscopy, scanning electron microscopy and dynamic light scattering. Furthermore, after being coated by the as-prepared sol containing sub-10 nm silica particles, the glass substrate exhibited good antireflective property with the maximum transmittance as high as 96.2 % compared with that of the bare at about 91 %. Also, the coated glass showed good antifogging property. Finally, the underlying mechanism responsible for the formation of ultrasmall silica nanoparticles was proposed taking into account the steric barrier of protonated tertiary amine molecules anchored at silica nuclei surface by electrostatic interactions.  相似文献   

3.
Titania coated silica spheres (SiO2@TiO2) prepared by heterocoagulation of silica and titania nano-particles were investigated as catalyst in the photodegradation of rhodamine B (RB) in aqueous solution. The silica spheres were prepared by the well-known Stöber method and titania sol by a hydrolysis–condensation reaction in acidic media. The uncoated and coated particles were characterized by zeta potential measurements, acoustic attenuation spectroscopy and scanning electron microscopy. The degradation of the dye was induced by illuminating the coated spheres in aqueous solution with artificial solar light. The spectral distribution of the applied light corresponds to the sunlight spectrum on the earth's surface. Rhodamine B was used as model dye and decomposed completely to colourless end products after illumination. The decrease in concentration of rhodamine B was monitored by UV–vis spectroscopy and the total organic carbon (TOC) was determined in order to verify the degradation mechanism described elsewhere.  相似文献   

4.
Titania–silica microspheres have been prepared by sol–gel process. Internal gelation route, which use hexamethylenetetramine as the source of ammonia was used for the preparation spherical gel particles. A cationic surfactant, cetrimide was added in the feed broth for introducing meso-porosity in the gel network. Further paraffin oil emulsion was incorporated in the feed broth before gelation for the formation of larger pores in the gel network. The spherical gel particles thus obtained were washed and heat treated under controlled conditions to remove the entrapped surfactant, paraffin oil and other organic compounds resulting in highly porous intact titania–silica microspheres. The material was characterized by surface area, porosity and by SEM photomicrographs. The ion exchange property of this material was studied using the sorption of plutonium on this material from carbonate medium by distribution coefficient studies and ion exchange column loading and elution experiments.  相似文献   

5.
纳米二氧化硅的表面改性研究   总被引:17,自引:0,他引:17  
以γ-缩水甘油醚丙基三甲氧基硅烷(GPTMS)对酸催化水解正硅酸乙酯(TEOS)聚合得到的纳米二氧化硅胶粒表面进行接枝改性,用激光粒径仪测定二氧化硅颗粒的粒径,并用透射电子显微镜(TEM)观察了改性前后二氧化硅胶粒的分散状况,采用傅立叶红外(FTIR)光谱法对改性前后的二氧化硅粉体进行了分析,通过热失重分析(TGA)法对GPTMS接枝改性二氧化硅胶粒表面的接枝度进行分析计算,同时对颗粒溶胶的ζ电位进行了测试,结果表明:改性后二氧化硅胶粒分散性大大提高,硅烷偶联剂浓度对接枝度有显著影响,当GPTMS的浓度为1mL/S iO2(g)时,接枝度达到最大,且颗粒表面的物理化学性能发生显著变化。  相似文献   

6.
Summary Monodispersed spherical submicron silica particles were obtained by the precipitation of soluble silica on the surface of preliminary obtained smaller particles. Silica was added into the system at low concentrations to prevent both its polymerization in the solution and the formation of new particles. The kinetics of the particle growth is controlled by the diffusion of soluble silica through the double diffusion layer.  相似文献   

7.
A previously proposed method for preparing monodispersed titania particles was extended to preparation of titania-coated silica spherical particles. The core silica particles with an average size of 264 nm were prepared with Stöber method. The titania-coating was performed in ethanol/acetonitrile solvent in the presence of silica particles by a sol-gel method with the use of titanium tetraisopropoxide (TTIP) and methylamine (MA) catalyst. Average size of the silica-titania particles decreased from 457 to 292 nm with an increase in concentration of silica particles. Coefficient of variation for the particle size was less than 5%. Colloidal crystals could be fabricated with a dip-coating technique and a sedimentation process, respectively. Measurements of reflectance revealed peaks based on the Bragg diffraction. Those peaks red-shifted with an increase in titania shell thickness because of a high refractive index of titania. Annealing at high temperature transformed crystal structure of titania shell from amorphous to anatase (500°C) and rutile (1000°C), which led to red-shift of reflection peak because of an increase in refractive index of titania due to the crystallization.  相似文献   

8.
Silica particles were generated and grown in situ by sol–gel method into rubber blends comprised of natural rubber (NR) and acrylonitrile butadiene rubber (NBR) at various blend ratios. Silica formed into rubber matrix was amorphous in nature. Amount of in situ silica increased with increase in natural rubber proportion in the blends during the sol–gel process. Morphology studies showed that the generated in situ silica were nanoparticles of different shapes and sizes mostly grown into the NR phase of the blends. In situ silica filled NR/NBR blend composites showed improvement in the mechanical and dynamic mechanical behaviors in comparison to those of the unfilled and externally filled NR/NBR blend composites. For the NR/NBR blend at 40/60 composition, in particular, the improvement was appreciable where size and dispersion of the silica particles into the rubber matrix were found to be more uniform. Dynamic mechanical analysis revealed a strong rubber–in situ silica interaction as indicated by a positive shift of the glass transition temperature of both the rubber phases in the blends.  相似文献   

9.
Silica films containing three dimensionally (3D) ordered pores were prepared by a simple dip coating method. A colloidal sol containing silica particles in the nanometer size range and a polystyrene latex (PSL) colloidal sol containing particles of tens of nanometers to one micrometer in size were used as precursors. The pore periodicity, which in turn produces the dielectric periodicity, can be easily altered by changing the size of the PSL beads. Films having a high surface smoothness were obtained by using small silica particles, large PSL particles, and a low withdrawal speed in the dip-coating. When the films were irradiated with a white light source, the reflective spectrum was changed by varying the incident angle, indicating its possible use as a monochromator. The change in the reflective spectrum was explained using effective medium approximation combined with a simple Bragg reflection equation.  相似文献   

10.
IntroductionTitanium dioxide with the rutile or the anatasestructure as,in principle,a white pigmentis widelyused as paints and plastic additives because of itshigh refractive index,oil adsorption,chemical orthermal stability[1— 4 ] .The most common manu- fac-ture of this material is based on the digestion of theore ilmenite(Fe O· Ti O) with sulfuric acid,fol-lowed by hydrolyzing the solution of titanium ionsand the calcination of the hydrous titanium ox-ides[5] .Another industrial prepara…  相似文献   

11.
Silica has been non-covalently coated on multi-walled carbon nanotubes (MWCNTs) using the sol–gel chemistry, where tetraethoxy silane (TEOS) was used to form an inorganic silica layer immediately next to surface of MWCNTs and octyl triethoxy silane was coated over the TEOS. Transmission electron microscopy (TEM) measurements show that the diameter of MWCNTs increases with increasing the number of coating layer, indicating that the silica has been coated on MWCNTs. Quantitative analysis from thermogravimetric analysis (TG) also indicates that the inorganic and organic silica has been successfully coated on MWCNTs. Further, quantitative analysis found that the amount of silica measured by TG agrees well with the increase of thickness of coated MWCNTs obtained from TEM, indicating that little or no free silica exists in the system. The thermal conductivity of epoxy/MWCNTs composite was studied and the results show that the thermal conductivity of the composite is improved by coating MWCNTs in this manner and increases with increasing the number of coatings.  相似文献   

12.
研究了钛/硅复合氧化物聚酯催化剂中,二氧化硅含量对聚对苯二甲酸乙二醇酯缩聚反应的影响.催化剂XRD谱图表示,增加二氧化硅含量会抑制二氧化钛的结晶.随着二氧化硅含量的增加,钛/硅催化剂表面Lewis酸的数目和强度都减小.比表面积和Lewis表面酸性都会影响钛/硅催化剂的活性.  相似文献   

13.
《中国化学会会志》2017,64(8):978-985
Alumina/titania composite aerogels with different titania contents were synthesized by the sol–gel process and supercritical ethanol drying. The structures and morphologies of synthesized aerogels were analyzed by X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetry, and N2 adsorption–desorption tests. Supercritical ethanol drying induced the crystallization of titania, which prompted the transformation of the structure from pseudoboehmite to γ‐Al2O3 . Reversely, alumina retarded the anatase‐to‐rutile transformation of titania. The content of titania significantly affected the structure and morphology of alumina/titania composite aerogels. A high content of titania (≥40%) resulted in the phase separation of titania particles, which grew to form the anatase phase octahedral particles with well‐developed facets. When the titania content was low, titania particles could be homogeneously dispersed in alumina particles to form spherical clusters with the poor crystallinity. Titania particles were in the anatase phase, and no rutile phase was formed until the temperature rose to 1000°C. In addition, titania addition resulted in a decrease in the specific surface area (SSA) of alumina aerogels because the SSA of titania was lower than that of alumina aerogels.  相似文献   

14.
The effect exerted by type of alkaline hydroxide additive on the change in turbidity and on the formation of silica hydrosol spatial structures was studied. Silica depolymerization in an alkaline solution to form active silicic acids was studied depending on the aging time of the system, size of sol particles, and the type of alkaline hydroxide additive.  相似文献   

15.

Nanocomposite latex particles, with a silica nanoparticle as core and crosslinked poly(tert‐butylmethacrylate) as shell, were prepared in this work. Silica nanoparticles were first synthesized by a sol‐gel process, and then modified by 3‐(trimethoxysilyl)propyl methacrylate (MPS) to graft C?C groups on their surfaces. The MPS‐modified silica nanoparticles were characterized by elemental analysis, FTIR, and 29Si NMR and 13C‐NMR spectroscopy; the results showed that the C?C groups were successfully grafted on the surface of the silica nanoparticles and the grafted substance was mostly the oligomer formed by the hydrolysis and condensation reaction of MPS. Silica/poly(tert‐butylmethacrylate) core/shell nanocomposite latex particles were prepared via seed emulsion polymerization using the MPS‐modified silica nanoparticle as seed, tert‐butylmethacrylate as monomer and ethyleneglycol dimethacrylate as crosslinker. Their core/shell nanocomposite structure and chemical composition were characterized by means of TEM and FTIR, respectively, and the results indicated that silica/poly(tert‐butylmethacrylate) core/shell nanocomposite latex particles were obtained.  相似文献   

16.
K. Tani  Y. Suzuki 《Chromatographia》1994,38(5-6):291-294
Summary A process to synthesize silica and titania as spherical packing materials has been investigated on the laboratory scale by the sol-gel method. The silica and titania obtained were tested under normal-phase separation conditions for comparison of their retention characteristics silica witha a commercial. The silica was found to be similar in its retention behaviour to the commercial silica. The titania showed basic properties and strongly retained acidic compounds.  相似文献   

17.
The aim of this work is to develop polycaprolactone based porous materials with improved mechanical performance to be used in bone repair. The hybrid membranes consist in a polymeric porous material in which the pore walls are coated by a silica thin layer. Silica coating increases membrane stiffness with respect to pure polymer but in addition filling the pores of the polymer with a silica phase improves bioactivity due to the delivery of silica ions in the neighborhood of the material in vivo. Nevertheless silica network, even that produced by sol–gel, might be too stiff and brittle what is not desirable for its performance as a coating. In this work we produced a toughened silica coating adding chitosan and 3-glycidoxypropyltrimethoxysilane (GPTMS) to the precursor solution looking for having polymer chains linked by covalent bonding to the silica network. Hybrid polymer–silica coating was produced by in situ sol–gel reaction using Tetraethyl orthosilicate (TEOS), GPTMS and chitosan. Chemical reaction between amine groups of chitosan chains and epoxy groups of GPTMS allowed covalent bonding of polymer chains to the silica network. Physical properties of the hybrid membranes were characterized and cell attachment of MC3T3-E1 pre-osteoblastic cells on the surface of these supports was assessed.  相似文献   

18.
Hybrid polyimide/silica materials were prepared from polyimides bearing reactive functions along the polymer backbone, which can react with. The silica phase was formed by sol–gel process using ammonium hydroxide catalyst. Silica fillers prepared under basic conditions were compared with materials prepared using chlorhydric acid. The synthesized hybrid materials were characterized by TGA, IRTF, and NMR. The density of the different systems was also measured. The morphology of these hybrid systems were investigated by both scanning and transmission electron microscope. Thermal properties of the composites were also evaluated by DSC and DMA. The morphology of silica fillers highly depends on the catalyst, on the reaction conditions of the sol–gel process, and the linking formation with the polyimide. It results that optimized conditions lead to homogeneous hybrid films containing 12 wt % of silica particles of about 20 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1891–1902, 2008  相似文献   

19.
The impregnation of a carrageenan gel by a silica sol is an efficient method to form a composite material which can be conveniently activated by CO2 supercritical drying. The textural properties of the solids have been characterized by nitrogen adsorption-desorption at 77 K and their composition by thermogravimetric analysis and EDX microprobe. Morphology was examined by SEM. The silica-carrageenan composites present an open macroporous structure. Silica particles retained inside the gel behaved as pillars between the polysaccharide fibrils and form a stick-and-ball network. The stiffening of the carrageenan gel by silica prevented its shrinkage upon drying. The nature of the alkali cations affected the retention of silica particles inside the gel. In the absence of silica, carrageenan fibrils rearrange under supercritical drying and form an aerogel with cavities in the mesopore range.  相似文献   

20.
Titania coated monodisperse silica spheres have been synthesized and fabricated as a close-packed colloidal crystalline array. We have demonstrated that the coated colloidal sphere can be used to control the peak position of the optical stop band through variation of the coating thickness. The titania coated silica spheres were prepared by the layer-by-layer assembly coating process, which reciprocally laminates the cationic polyelectrolyte and the anionic titania nanosheets on a monodisperse silica spheres, and were sintered to change the titania nanosheets to anatase. The Bragg diffraction peak of the colloidal crystalline array shifted to the long wavelength region with an increase of thickness of the titania layer. Angle-resolved reflection spectra measurements clarified that the red shift was caused by increasing of the refractive index with increase of the thickness of the layer. The current work suggests new possibilities for the creation of advanced colloidal crystalline arrays with tunable optical properties from tailored colloidal spheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号