首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
采用密度泛函方法研究了CaNiN的电子结构及其金属性和磁性,结果表明,由于弱的空间偶合作用,该化合物中一唯(1D)NiN^2-链的能带结构(Γ→X)集中反映了CaNiN的二维(2D)以及三维(3D)能带的主要特征,其能带结构揭示了CaNiN的金属性和磁性的本质,将1DNiN^2-链的结果与[MX](M=Pt,Pd,Ni;X=Cl,Br,I)对比,阐述了畸变发生的本质在于空间轨道能量的降低与核间排斥能及电子相互作用能的升高竞争的结果,发现后者占优势则不发生畸变,畸变越小越有利于材料具有顺磁性。  相似文献   

2.
采用密度泛函理论(DFT)在广义梯度近似(GGA)下的平面波超软赝势法, 研究了Sr2-xLaxCrReO6(x=0, 0.25, 0.5, 1)的晶体结构、电子结构和磁性. 通过几何结构优化, 得到了材料的晶格常数、电子和自旋分布以及磁矩的大小. 分析了La电子掺杂对Sr2CrReO6材料结构的影响, 发现当La掺杂浓度较小(x<1)时, Sr2-xLaxCrReO6仍保持半金属特性, 但刚好在费米面以下自旋向上的电子密度逐渐增大, 自旋向下能带的带隙增加, 总磁矩减小; 当掺杂浓度较大(x=1)时, Sr2-xLaxCrReO6从具有亚铁磁半金属性转化为铁磁金属性.  相似文献   

3.
黄元河  谢前  刘若庄 《化学学报》1993,51(9):865-868
用一维自洽场晶体轨道法探讨了过渡金属夹心高聚物[(C~4BH~5)M]~n(M=Cr,Mn,Fe,Co,Ni)的一维链结构和电子结构.计算表明,堆积单元(C~4BH~5)M中价电子数为奇数的高聚物结构会发生Peierls畸变,而价电子数为偶数的将取规则结构,由能带结构得到, [(C~4BH~5)Mn]~n的前线能带出现交叉,可能会发生进一步的结构畸变,但也有可能保持非满状态,成为异体.[(C~4BH~5)Ni]~n可能是不稳定的.其余三个高聚物为半导体或绝缘体,这系列高聚物电荷载流子通路主要依赖于金属d轨道重叠.  相似文献   

4.
蔡淑惠  李隽 《结构化学》1993,12(3):224-228
本文采用EHT近似下的紧束缚能带方法,计算了NbX(X=C,N,O)的能带结构。结果表明,它们的能带结构相近,Nb—X间存在较强的成键作用,传导电子主要具有Nb的4d特征,Nb—Nb键与超导电性相关,从C到N,Nb—Nb键共价性削弱,Tc提高。尽管计算所得NbO中Nb—Nb键强度介于NbC和NbN之间,但其实际Tc却比NbC和NbN的都低,这是NbO的空位效应所致,这一结果可从我们对有序缺陷的Nb_(0.75)O_(0.75)晶体能带结构的计算得到验证。  相似文献   

5.
黄金陵 《结构化学》2000,19(6):461-469
总结了我们此前开展链状结构前过渡金属硫属化合物结构研究的结果。按照结构特征 ,分类讨论了 1 2个链状化合物的晶体结构、电子结构和物性。化合物M4O (Te2 ) 4I4Te(M =Ti,Ta)具有绝缘体性质 ,其结构由M4OTe10 I4氧心四核簇通过共用Te原子连接而成的 [M4OTe9I4]链组成 ;化合物 (MQ4) nG(M =Nb ,Ta;Q =Se,Te ;G =I,In ,Sb)具有半导体性质 ,其结构由 [M (Q2 ) 2 ]1∞ 链组成 ,链间插入G原子 ;化合物 (MTe4) nIn -2 (TaI6 ) (M =Nb ,Ta;n =4、6 )的结构由 [M (Te2 ) 2 ]1∞ 链、分立的TaI6基团和I原子组成 ,它们具有良好的导电性。  相似文献   

6.
采用密度泛函理论(DFT)方法,在LDA+U水平下详细研究了电场和应力作用下氮钝化扶手型氧化锌纳米带(NA8-ZnONRs)的电子结构和磁特性。对体系的电子结构和磁性进行详细的计算,结果表明:本征扶手型氧化锌纳米带(A8-ZnONRs)是无磁性P型半导体。氮钝化后NA8-ZnONRs具有铁磁金属性,其磁性主要来源于N2p轨道(2.56μB)和O2p轨道(0.69μB)电子的自旋极化,总磁矩为3.21μB。NA8-ZnONRs体系对X方向电场有较强的响应,通过调节X方向电场的幅度,可以有效调节体系的磁矩。在X方向电场作用下体系仍具有铁磁金属性,磁性也主要来源于N2p和O2p轨道电子的自旋极化。施加X方向应力作用后,体系仍表现为铁磁金属性。与NA8-ZnONRs纳米带磁矩相比,体系的总磁矩均发生了较大幅度的增长,表明体系对应力作用具有较明显的相应。但随着应力幅度的调节,总磁矩的变化较平坦。表明施加应力可以有效调节体系的磁矩,但在较小应力范围内,体系对应力变化的相应不明显。  相似文献   

7.
通过调变辅助配体,设计合成了两个新的Cu(II)化合物Cu(mal)(tap)(H2O)]n(1) 和 [Cu2(mal)2(bpym)2(H2O)2]·2H2O(2) (其中H2mal =顺丁烯二酸, tap=1,4,5,8-四氮杂菲,bpym=2,2′-联嘧啶),并用X-射线单晶衍射技术对其进行了结构表征。化合物1是一维弓背状配位聚合链通过氢键和π–π 堆积作用拓展形成的三维超分子体系;化合物2 展现一个具有六连接α-Po(46)拓扑的3D→3D二重穿插结构。此外根据晶体结构,利用Gaussian 03W中的DFT方法对化合物1和2进行几何构型优化,同时,用DFT-BS方法研究了两个化合物的磁性,结果表明计算结果与实验结果吻合,它们均具有弱的反铁磁相互作用。  相似文献   

8.
蔡淑惠  李隽 《结构化学》1993,12(3):192-196
固相过渡金属原子簇化合物Nb_3X_4(X=S,Se,Te)在低温下出现超导行为,且从S到Te,Nb_3X_4的超导转变温度Tc呈下降趋势。本文采用EHT近似下的紧束缚能带方法,计算了Nb_3X_4的能带结构。讨论其电子结构与超导电性的关系,并从化学键的观点出发对其Tc的递变加以解释。此外,本文还给出了Nb金属晶体的能带结构。  相似文献   

9.
采用水热合成方法得到3个新的双肼桥连过渡金属化合物:[M(N2H4)2Cl2]n(M=Mn(1),Ni(2)),{[Co1.5(N2H4)3PO4(H_2O)]·H_2O}n(3),用单晶X射线衍射方法对其晶体结构进行表征。化合物1是以2个肼分子桥联金属Mn和Ni形成1D链状结构,而粉末XRD显示1与2是同构的。化合物3是以2个肼分子桥联金属Co形成1D链,不同的1D链再通过磷酸根PO43-进一步堆积形成3D结构。磁性测试表明肼桥在磁性中心之间传递反铁磁耦合作用。  相似文献   

10.
用紧束缚近似的EHMO方法对α-MTDTPY·TCNQ(1)、β-MTDTPY·TCNQ(2)及MTDTPY·CHL(3)三种电荷转移复合物晶体的电子能带进行了计算.在1中,电子施体(D)分子MTDTPY及受体(A)分子TCNQ形成交替重叠的一维分子柱(M),柱间无净电荷转移.能隙.E_G=0.15 eV,载流子的产生主要来自热激发.在2及3中,电子施体(D)MTDTPY及受体(A)TCNQ及CHL分子分别形成相对独立的D及A一维分子柱,载流子的产生主要来自柱间的电荷转移.由电子能带结构及关于载流子迁移的Frohlich-Sewell公式,得出上述三种晶体的室温电导率之比为σ_1∶σ_2∶σ_3=3.72×10~(-10)∶1∶1.15,与实验事实基本一致.关于各分子柱对σ的贡献,2中D柱∶A柱~10~3∶1;3中D柱∶A柱~2∶1.根据计算结果,本文还对载流子的迁移机理进行了讨论.  相似文献   

11.
Whereas open-framework materials have been made in a variety of chemical compositions, few are known in which 3-connected SO3(2)- anions serve as basic building units. Here, we report four new metal-sulfite polymeric structures, (ZnSO3)Py (1, py = pyridine), (ZnSO3)2(2,2'-bipy)H2O (2, 2,2'-bipy = 2,2'-bipyridine), (ZnSO3)2(TMDPy) (3, TMDPy = 4,4'-trimethylenedipyridine), and (MnSO3)2en (4, en = ethylenediamine) that have been synthesized hydrothermally and structurally characterized. In these compounds, low-dimensional 1D and 2D inorganic subunits are assembled into higher 2D or 3D covalent frameworks by organic ligands. In addition to the structure-directing effect of organic ligands, the flexible coordination chemistry of Zn2+ and SO3(2)- also contributes to the observed structural diversity. In compounds 1-3, Zn2+ sites alternate with trigonal pyramidal SO3(2)- anions to form three types of [ZnSO3]n chains, whereas in compound 4, a 2D-corrugated [MnSO3]n layer is present. Compound 1 features a rail-like chain with pendant pyridine rings. The pi-pi interaction between 2,2'-bipy ligands is found between adjacent chains in compound 2, resulting in 2D sheets that are further stacked through interlayer hydrogen bonds. Compound 3 exhibits a very interesting inorganic [(ZnSO3)2]n chain constructed from two chairlike subunits, and such chains are bridged by TMDPy ligands into a 2D sheet. In compound 4, side-by-side helical chains permeate through 2D-corrugated [MnSO3]n layers, which are pillared by neutral ethylenediamine molecules into a 3D framework that can be topologically represented as a (3,6)-connected net. The results presented here illustrate the rich structural chemistry of metal-sulfites and the potential of sulfite anions as a unique structural building block for the construction of novel open-framework materials, in particular, those containing polymeric inorganic subunits that may have interesting physical properties such as low-dimensional magnetism or electronic properties.  相似文献   

12.
New Mo and W tetraphosphine-dihalide complexes [MX2(kappa4-P4)] (2, MX=MoCl, MoBr, WBr; P4=meso-o-C6H4(PPhCH2CH2PPh2)2) with uncommon trigonal-prismatic geometries have been prepared. Treatment of ethyl diazoacetate with 2 (MX=MoCl) resulted in catalytic carbenoid-group coupling to give diethyl maleate and fumarate, whereas reactions of 2 with trimethylsilyldiazoalkane formed the diazoalkane complexes trans-[MX(NN=CHSiMe3)-(kappa4-P4)]+ (3+) and cis,mer-[MoCl2(NN=CHSiMe3)(kappa3-P4)]. The molecular structures of 2 (MX=MoCl) and 3[PF6] (MX=WBr) were crystallographically determined.  相似文献   

13.
The complexes MX5(THF) (M = Nb, X = Cl, 2a; M = Ta, X = F, 2c, X = Cl, 2d) and [MX4(THF){O(CH2)4O(CH2)3CH2)}][MX6] (M = Nb, X = Cl, 3a; M = Ta, X = Cl, 3d, X = Br, 3e, X = I, 3f) result from reactions of MX5 with 0.5 and 1.5 equiv of THF, respectively. Compounds 3 contain the unprecedented 4-(tetrahydrofuran-1-ium)-butan-1-oxo ligand and are likely to play a role in the course of THF polymerization catalyzed by MX5. The addition of L (L = 2,5-dimethyltetrahydrofuran, tetrahydropyran, 1,4-dioxane) to MX5 results in the formation of the hexacoordinated complexes MX5(L). The molecular structures of 2d, 3d, and NbCl5(dioxane), 6a, have been ascertained by X-ray diffraction studies.  相似文献   

14.
The effects of the concentration of inert organic salts, [MX], (MX=2-, 3- and 4-BrBzNa with BrBzNa=BrC(6)H(4)CO(2)Na) on the rate of piperidinolysis of ionized phenyl salicylate (PS(-)) have been rationalized in terms of pseudophase micellar (PM) coupled with an empirical equation. The appearance of induction concentration in the plots of k(obs) versus [MX] (where k(obs) is pseudo-first-order rate constants for the reaction of piperidine (Pip) with PS(-)) is attributed to the occurrence of two or more than two independent ion exchange processes between different counterions at the cationic micellar surface. The derived kinetic equation, in terms of PM model coupled with an empirical equation, gives empirical parameters F(X/S) and K(X/S) whose magnitudes lead to the calculation of usual ion exchange constant K(X)(Br) (=K(X)/K(Br) with K(X) and K(Br) representing cationic micellar binding constants of counterions X(-) and Br(-), respectively). The value of F(X/S) measures the fraction of S(-) (=PS(-)) ions transferred from the cationic micellar pseudophase to the aqueous phase by the optimum value of [MX] due to ion exchange X(-)/S(-). Similarly, the value of K(X/S) measures the ability of X(-) ions to expel S(-) ions from cationic micellar pseudophase to aqueous phase through ion exchange X(-)/S(-). This rather new technique gives the respective values of K(X)(Br) as 8.8±0.3, 71±6 and 62±5 for X(-)=2-, 3- and 4-BrBz(-). Rheological measurements reveal the shear thinning behavior of all the surfactant solutions at 15mM CTABr (cetyltrimethylammonium bromide) indicating indirectly the presence of rodlike micelles. The plots of shear viscosity (η) at a constant shear rate (γ), i.e. η(γ), versus [MX] at 15 mM CTABr exhibit maxima for MX=3-BrBzNa and 4-BrBzNa while for MX=2-BrBzNa, the viscosity maximum appears to be missing. Such viscosity maxima are generally formed in surfactant solutions containing long stiff and flexible rodlike micelles with entangled and branched/multiconnected networks. Thus, 15 mM CTABr solutions at different [MX] contain long stiff and flexible rodlike micelles for MX=3- and 4-BrBzNa and short rodlike micelles for MX=2-BrBzNa.  相似文献   

15.
蔡淑惠  陈忠  孙福侠  高宪成  卢绍芳 《化学学报》1998,56(11):1117-1122
二核钼簇合物Mo~2S~4(i-mnt)~2(Et~4N)~2和(Et~4N)~3K[Mo~2S~4(i-mnt)~2]~2[i-mnt=S~2C(CN)^2^-]的阴离子在晶体中构成独特的链状结构,本文采用扩展的Huckel近似下的紧束缚能带方法,计算了它们的能带结构。结果表明,相邻簇阴离子间存在弱的相互作用,它是形成链状结构的基础。链状结构与晶体的半导体性质相关联。态密度和晶体轨道重叠布居反映了晶体中电荷分布状况及化学成键特点,与晶体结构分析、NMR谱学表征结果相符合。  相似文献   

16.
对一维卤桥过渡金属化合物〔Pd(en)2Pd(en)2X2〕n^4+(X=Cl,Br,I)应用量子化学从头算及EHT能带计算进行了研究,发现Peierls畸变的产生及程度取决于填充轨道能量的降低与核间及电子间相互作用。  相似文献   

17.
The reaction of Ta with an in situ formed polythiophosphate melt of Cs2S3, P2S5, and S yields the two new quaternary tantalum thiophosphates Cs2Ta2P2S12 (I) and Cs4Ta4P4S24 (II). Both compounds were obtained with the same stoichiometric ratio but at different reaction temperatures. Compound I was prepared at 873 K and crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 8.862(2) A, b = 12.500(3) A, c = 17.408(4) A, beta = 99.23(3) degrees, and Z = 4. Compound II was prepared at 773 K and crystallizes in the monoclinic space group P2(1)/n (No. 14) with a = 14.298(3) A, b = 17.730(4) A, c = 16.058(3) A, beta = 106.19(3) degrees, and Z = 4. The two structures are closely related and exhibit two-dimensional anionic layers consisting of dimeric [Ta2S11] units which are linked by two tetradentate and two tridentate [PS4] tetrahedra. The significant difference between these two compounds is the orientation of the [Ta2S11] units in infinite [Ta2S4(PS4)]x chains which are subunits of both structures. The specific orientation of the [Ta2S11] blocks in compound I leads to the formation of one cavity in the 2(infinity)[Ta2P2S12]2- layers, whereas in compound II two types of cavities are observed in the 2(infinity)[Ta4P4S24]4- layers. The Cs+ ions are located between the layers above and below the cavities. The compounds were characterized with infrared spectroscopy in the MIR region, Raman spectroscopy, and UV/Vis diffuse reflectance spectroscopy. When Cs4Ta4P4S24 (II) is heated at the synthesis temperature of compound I it is fully converted into compound I.  相似文献   

18.
Doping of spin-ladder systems by isostructural paramagnetic complexes was attempted. Despite the close isostructural nature of the pure (DT-TTF)2[M(mnt)2] (M = Au, Ni, Pt) end-members, which present a ladder structure, doping of the spin-ladder (DT-TTF)2[Au(mnt)2] with either 5% or 25% [M(mnt)2]- (M = Ni, Pt) generates two (metrically) new phases. Their markedly different crystal structures have been determined using laboratory X-ray powder diffraction data. (DT-TTF)2[Au0.75Ni0.25(mnt)2] consists of a mixed-valence compound (of triclinic symmetry), which was only detected, pure or in a mixture of phases, when [Ni(mnt)2]- was used as a dopant. Differently, the stoichiometric 1:1 [DT-TTF][Au0.75Pt0.25(mnt)2] monoclinic phase was found when [Pt(mnt)2]- (in 5% and 25%) was employed as the doping agent. Remarkably, only in the 5% Pt doping experiment, the major component of the mixture was the ladder structure compound (DT-TTF)2[Au(mnt)2] doped with minor amounts of Pt. This 5% Pt-doped specimen shows an EPR signal (g = 2.0115, DeltaHpp = 114 G at 300 K) wider than the pure compound (DT-TTF)2[Au(mnt)2], denoting exchange between the donor spins and Pt(mnt)2- centers. The electrical transport properties of the 5% Pt-doped composition at high temperatures are comparable to those of (DT-TTF)2[Au(mnt)2] with room-temperature conductivity sigma300K = 13 S/cm and thermopower S300K = 46 microV/K, with a sharp transition at 223 K similar to that previously observed in the Cu analogue at 235 K.  相似文献   

19.
Jiang L  Lu TB  Feng XL 《Inorganic chemistry》2005,44(20):7056-7062
The reaction of [Ni(alpha-rac-L)](ClO4)2 with K2[Ni(CN)4] gives a cyanide bridged [2+2] type of molecular square, {cis-[Ni(f-rac-L)][Ni(CN)4]}2 (1). By slightly changing the reaction conditions, the reaction of [Ni(alpha-rac-L)](ClO4)2 with KCN leads to a metastable compound, cis-[Ni(f-rac-L)(CN)2] (2), and an unexpected 1D helical chain, {cis-[Ni(f-rac-L)][Ni(CN)4]}n (3). In 3, the 1D helical chains are packed in an alternating right- and left-handed chirality due to the oppositely twisted arrangements of two adjacent [Ni(CN)4]2- anions. The metastable compound 2 can be converted to 3 in a CH3CN/CH3OH solution. Compounds 1 and 3 are classified as supramolecular isomers, and isomer 3 can be considered to be formed by the ring-opening polymerization of the square precursor 1. Magnetic susceptibility measurements of 1 and 3 show that the adjacent six-coordinated Ni(II) atoms are antiferromagnetically coupled through the bent -NC-Ni-CN- bridges of the diamagnetic [Ni(CN)4]2- anions, with g = 2.08 and J = -0.426 cm(-1) for 1 and g = 2.08 and J = -0.278 cm(-1) for 3. The correlation between the structures and the J values is discussed.  相似文献   

20.
The variations in the nonchromophoric ligands of [Ru(L)4bpy]2+ complexes are shown to result in large changes in emission band shapes, even when the emission energies are similar. These changes in band shape are systematically examined by means of the generation of empirical reorganizational energy profiles (emreps) from the observed emission spectra (Xie, P.; et al. J. Phys. Chem. A 2005, 109, 4671), where these profiles provide convenient probes of the differences in distortions from the ground-state structures of the 2,2-bipyridine (bpy) ligands (for distortion modes near 1500 cm(-1)) in the metal-to-ligand charge-transfer (MLCT) excited states for a series of complexes with the same ruthenium(II) bipyridine chromophore. The bpy ligand is nearly planar in the X-ray structures of the complexes with (L)4 = (NH3)4, triethylenetetraamine (trien), and 1,4,7,10-tetraazacyclododecane ([12]aneN4). However, for (L)4 = 5,12-rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, the X-ray crystal structure shows that the bpy ligand is twisted in the ground state (a result of methyl/bpy stereochemical repulsion) and the emrep amplitude at about 1500 cm(-1) is significantly larger for this structure than for the complex with (L)4 = 1,4,8,11-tetraazacyclotetradecane, consistent with larger reorganizational energies of the bpy distortion modes in order to form a planar (bpy(-)) moiety in the excited state of the former. The trien and [12]aneN4 complexes have very nearly the same emission energies, yet the 40% smaller vibronic sideband intensity of the latter indicates that the MLCT excited state is significantly less distorted; this smaller distortion and the related shift in the distribution of distortion mode reorganizational energy amplitudes is apparently related to the 36-fold longer lifetime for (L)4 = [12]aneN4 than for (L)4 = trien. For the majority (77%) of the [Ru(L)4bpy]2+ complexes examined, there is a systematic decrease in emrep amplitudes near 1500 cm(-1), consistent with decreasing excited-state distortion, with the excited-state energy as is expected for ground state-excited state configurational mixing in a simple two-state model. However, the complexes with L = [12]aneN4, 1,4,7,10-tetraazacyclododeca-1-ene, and (py)4 all have smaller emrep amplitudes and thus less distorted excited states than related complexes with the same emission energy. The observations are not consistent with simple two-state models and seem to require an additional distortion induced by excited state-excited state configurational mixing in most complexes. Because the stereochemical constraints of the coordinated [12]aneN4 ligand restrict tetragonal distortions around the metal, configurational mixing of the 3MLCT excited state with a triplet ligand-field excited state of Ru(II) could account for some of the variations in excited-state distortion. The large number of vibrational distortion modes and their small vibrational reorganizational energies in these complexes indicate that a very large number of relaxation channels contribute to the variations in 3MLCT lifetimes and that the metal-ligand skeletal modes are likely to contribute to some of these channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号