首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Equilibrium of Cr atoms between the surface layer and bulk of a binary alloy was analyzed. The Gibbs adsorption equation was used to obtain the dependence of the adsorption activity of atoms in the surface layer on their activity in the bulk. An approximate thermodynamic method was used to calculate the adsorption of Fe (Ni) and Cr atoms in the surface layers of Fe-Cr and Ni-Cr alloys. According to calculations, there was negative adsorption, X Cr ≪ 1, in the surface layer of the alloys caused by a large difference between the Gibbs surface energies of Cr and Fe (or Ni). The negative adsorption of Cr shifted chemical reaction equilibria on the alloy-oxide film boundary both in oxidation in air and in anodic passivation, 3FeO (NiO) + 2Cr = Cr2O3 + 3Fe(Ni), toward oxide film enrichment in the FeO (or NiO) oxide. A unified method for calculating the composition of oxide films on alloys was used for both processes. The method was based on the use of the initial data on the Gibbs surface energy of metals constituting alloys. The calculated oxide film compositions were close to the experimental X-ray photoelectron spectroscopy data.  相似文献   

2.
为了改善基于SnO2电子传输层的钙钛矿太阳能电池的界面电荷传输特性和迟滞现象,我们采用低温溶液处理工艺制备了4种不同类型的SnO2电子传输层用于钙钛矿太阳能电池,包括由SnCl4·5H2O溶胶-凝胶层(Cl4-SnO2)、SnCl2·2H2O溶胶-凝胶层(Cl2-SnO2)和SnO2纳米颗粒层(NP-SnO2)与SnO2胶体层(Col-SnO2)两两相互作用形成的同质结SnO2双层电子传输层和Col-SnO2单层电子传输层;并系统研究了不同SnO2双层电子传输层对器件光电性能和迟滞现象的影响。通过扫描电镜(SEM)、X射线衍射(XRD)、稳态光致发光(PL)、电化学阻抗(EIS)和稳定性测试等表征证实,在Col-SnO...  相似文献   

3.
In present study, ZnO/SnO2/ZnO/SnO2/ZnO multi–layer, ZnO/SnO2/ZnO triple layer and ZnO single layer films have been deposited on glass substrate by sol–gel dip–coating technique. The structural and optical properties of thin films have been investigated by X-ray diffractometer, UV–visible, photoluminescence spectroscopies and scanning electron microscopy. The structural analysis reveals structural inhomogeneities and different crystallite growth processes as function of number of deposited layers. A comparison between photocatalytic activity of zinc oxide samples toward photodegradation of phenol, 4-aminophenol and 4-nitrophenol has been performed under UV light irradiation. Experiments were conducted to study the effects of operational parameters on the degradation rate. Pseudo-first-order photodegradation kinetics was observed on all films and the reaction constants were determined. The results showed that the photocatalytic activity of ZnO multi–layer film was superior to that of the ZnO single- and triple-layer films. Differences in film efficiencies can be attributed to differences in crystallinity, surface morphology, defect concentration of oxygen vacancy and to presence of SnO2 sublayer that may act as trap for electrons generated in the ZnO layer thus preventing electron–hole recombination. The results reveal that SnO2 hetrojunction layers improve crystalline quality, optical and photocatalytic properties of ZnO multilayered films.  相似文献   

4.
The luminescence properties of SnO2-coated ZnS:Mn phosphors are investigated. In the case of photoluminescence, emission intensities show little change when SnO2 is coated on the surface of ZnS:Mn, while in the case of cathodoluminescence (CL), emission intensities vary depending on excitation energies. In order to determine the luminescence behaviors, surface analyses of the phosphors were performed. Auger electron spectroscopy showed that the width of the SnO2 layer on the ZnS:Mn phosphor was saturated at approximately 120 nm. Also, X-ray photoelectron spectroscopy indicated that the SnO2 layers are well formed and saturated when the molar ratios of Sn/Zn are larger than 0.005. These results suggest that the changes in the CL emissions can be attributed to a lowering of the junction barrier.  相似文献   

5.
Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur–Ag–SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV–visible diffuse reflectance spectra (UV–vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag–SnO2 and Cur–Ag–SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur–Ag–SnO2 shows better photocatalytic activity than that of Ag–SnO2 and SnO2. The superior photocatalytic activity of Cur–Ag–SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur–Ag–SnO2 were tested.  相似文献   

6.
The chromate conversion coating formed on commercial tinplate via a cathode electrolytic dichromate treatment has been studied by X‐ray photoelectron spectroscopy (XPS) and electrochemistry methods. Through the analysis of the XPS, it was shown that there existed Cr, O, and Sn in the chromate coating and the chromate film consisted mainly of Cr(OH)3, Cr2O3, Sn, and SnOx. The current density decreased with increasing of the electric charge. The corrosion resistance for tinplate is relative with the content of chromium in the passivation film. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A Ti/SnO2 + RuO2 + MnO2 electrode was prepared by thermal decomposition of their salts. Results from SEM and XPS analyses, respectively, indicate that the coating layer exhibits a compact structure and the oxidation state of Mn in the coating layer is +IV. The experimental activation energy for the oxygen evolution reaction, which increased linearly with increasing overpotential, is about 8 kJ⋅mol−1 at the equilibrium potential (η=0). The electrocatalytic characteristics of the anode are discussed in terms of ligand substitution reaction mechanisms (Sn1 and Sn2). It was found that the transition state for oxygen evolution at the anode in acidic solution follows a dissociative mechanism (Sn1 reaction). The Ti/SnO2 + RuO2 + MnO2 anode in conjunction with UV illumination was used to degrade phenol solutions, where the concentration of phenol remaining was determined by high-performance liquid chromatography (HPLC). The results indicate that the degradation efficiency of phenol on the anode can reach 96.3% after photoelectrocatalytic oxidation for 3 h.  相似文献   

8.
Herein we report a facile and efficient method for self‐assembling noble‐metal nanoparticles (NPs) to the surface of SnO2‐coated carbon nanotubes (CNT@SnO2) to construct CNT@SnO2/noble metal NP hybrids. By using SnCl4 as the precursor of the SnO2 shell on the surface of CNTs, the hydrolysis speed of SnCl4 was slowed down in ethanol containing a trace amount of urea and water. The coaxial nanostructure of CNT@SnO2 was confirmed by using X‐ray powder diffraction (XRD) and transmission electron microscopy (TEM). It was found that the coating layer of SnO2 was homogeneous with the mean thickness of 8 nm. The CNT@SnO2/noble‐metal NP hybrids were obtained by mixing noble‐metal NPs with as‐prepared CNT@SnO2 coaxial nanocables by means of a self‐assembly strategy. With the amino group terminated, the CNT@SnO2 coaxial nanocable can readily adsorb the as‐prepared noble‐metal NPs (Au, Ag, Au? Pt, and Au? Pd NPs). The presence of an amino group at the surface of SnO2 was proved by use of X‐ray photoelectron spectroscopy (XPS). In addition, H2O2 sensing by amperometric methods could serve as detection models for investigating the electrocatalytic ability of as‐prepared hybrid materials. It was found that wide linear ranges and low detection limits were obtained by using the enzyme‐free CNT@SnO2@Au? Pt modified electrode, which indicated the potential utilizations of the hybrid based on CNT@SnO2 for electrochemical sensing.  相似文献   

9.
The kinetics of tin oxidation was studied using Auger spectroscopy and characteristic electron energy loss spectroscopy. Studies were performed with continuous electron irradiation (E p = 1800 eV) and without it depending on exposition in oxygen medium at a 10−6 torr partial oxygen pressure and room temperature (maximum exposure in oxygen was 3000 Langmuir). Exposition to oxygen at 3000 L was shown to cause the formation of a continuous SnO2 oxide layer, whereas electron irradiation with the same exposition stimulated the growth of a layer predominantly containing SnO.  相似文献   

10.
In this work, zinc oxide/tin oxide (ZnO/SnO2) heterostructured nanomaterials were synthesized by hydrothermal method. Transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction measurements revealed that the product was composed of ZnO nanowires and SnO2 nanobranches. The novel ZnO/SnO2 heterostructured nanocrystals were for the first time used as a supporting matrix to explore a novel immobilization and biosensing platform of redox proteins. UV–visible absorption investigation indicated that hemoglobin (Hb) intercalated well in the ZnO/SnO2 heterostructured nanocrystals retained its native structure. Comparative experiments have confirmed that the ZnO/SnO2-based biosensor not only had enhanced direct electron transfer capacity but also displayed excellent electrocatalytic properties such as higher sensitivity and wider linear range to the detection of hydrogen peroxide in comparison with the ZnO- and SnO2-based biosensors.  相似文献   

11.
Sn-plating of aluminum alloy before and after a post-molybdate treatment is characterized by 119Sn conversion electron Mössbauer spectrometry (CEMS). CEMS results gave the direct evidence that the oxidation resistance of Sn-coated aluminum alloy is improved by the post-molybdate treatment. Depth selective CEMS showed that the coating structures consist of SnO2 on the top coating and the mixed Sn(0) and Sn(II) species in the intermediate layers. The Sn(II) oxide exists abundantly near the interface between the aluminum alloy and the Sn coating rather than beneath SnO2 layer.  相似文献   

12.
Pd/Ag films were electrolessly deposited onto p-silicon (100)-activated seed layers of Ag and Pd, respectively, in the solution of 0.005 mol l−1 AgNO3 + 0.005 mol l−1 PdCl2 + 4.5 mol l−1 NH3 + 0.16 mol l−1 Na2EDTA+0.1 mol l−1 NH2NH2 (pH 10.5) at room temperature. The morphology and composition of the films were studied comparatively by using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Cathodic polarization curves for hydrogen evolution were recorded in 0.5-mol l−1 H2SO4 without illumination, in which the obtained films served as working electrodes. The experimental results show that the film obtained on the Ag seed layer was rather a pure Ag film and not a Pd/Ag film, and the Ag deposition rate on Pd sites was much faster than that on Ag sites.  相似文献   

13.
Anti-corrosion silica coating was prepared via the sol–gel method for AZ91D magnesium alloy using tetraethoxysilane and methyltriethoxysilane as precursors. Silica coating was deposited on fluorinated magnesium alloy substrates by dip coating. The surface morphology of the silica coating was characterized by scanning electron microscope (SEM). The corrosion properties were studied by electrochemical impedance measurements and polarisation technique in 3.5 wt% Sodium chloride solution. The results showed an improvement in the corrosion performance from these coatings. A three-factor, three-level design of experiment (DOE) with response surface methodology including a Box–Behnken design was run to evaluate the main and interaction effects of several independent formulation variables, which included precursor ratios MTES/TEOS (X1), sintering temperature (X3) and sol dilution (X2) which measured the volume of the diluted sol divided by the initial volume of sol. The dependent variables included the corrosion current derived from the polarisation curve (icor = Y1) and the coating resistance derived from the Nyquist curve (Rcoat = Y2). Optimizations were predicted to yield Y1 and Y2 values of 1.57018E–7A cm−2 and 14279 Ω cm2, when X1, X2, and X3 were 3.36, 1.52 and 222, respectively.  相似文献   

14.
Multilayered diamond‐like carbon (DLC) nanocomposite coating has been deposited on silicon and stainless steel substrates by combination of cathodic arc evaporation and magnetron sputtering. In order to make DLC coating adhered to metal substrate, a chromium interlayer has been deposited with constant bias voltage of −150 V applied to the substrate. Dense multilayered coating consists of metallic or nonmetallic and tetrahedral carbon (ta‐C) layers with total thickness of 1.44 μm. The coating has been studied for composition, morphology, surface nature, nanohardness, corrosion resistance, and tribological properties. The composition of the coating has been estimated by energy‐dispersive spectroscopy. Field‐emission scanning electron microscopy and atomic force microscopy have been used to study the surface morphology and topography. ID/IG ratio of ta‐C:N layer obtained from Raman spectroscopy is 1.2, indicating the disorder in the layer. X‐ray photoelectron spectroscopy studies of individual ta‐C:N, CrN, and Cr‐doped DLC layers confirm the presence of sp2C, sp3C, CrN, Cr2N, and carbidic carbon, and sp2C, sp3C, and Cr carbide. Nanohardness studies show the maximum penetration depth of 70 to 85 nm. Average nanohardness of the multilayered DLC coating is found to be 35 ± 2.8 GPa, and Young's modulus is 270 GPa. The coating demonstrates superior corrosion resistance with better passivation behavior in 3.5% NaCl solution, and corrosion potential is observed to move towards nobler (more positive) values. A low coefficient of friction (0.11) at different loads is observed from reciprocating wear studies. Wear volume is lower at all loads on the multilayered DLC nanocomposite coating compared to the substrate.  相似文献   

15.
Pure and Ag-containing TiO2 films (Ag/Ti = 3.3 at.%) are coated on plasma nitrided 316L stainless steel by sol–gel method for biomedical applications. The addition of Ag does not cause obvious change in TG–DSC curves of the dried gels. The rough surface generated by plasma nitriding and the addition of Ag improve structural integrity of the TiO2 films. X-ray diffraction reveals N loss and oxidation of the nitride layer during calcination treatment, and peaks of Ag or its oxides are not detected. X-ray photoelectron spectroscopy analysis indicates that Ag presents as metallic state in the film. Water contact angles of the coating samples decrease with UV irradiation treatment. The potentiodynamic polarization tests in a Ca-free Hank’s balanced salt solution show that the TiO2 coated samples have decreased corrosion resistance due to N loss and oxidation of the nitride layer. The methods for crystallization of TiO2 gel layers with minimized or avoided structural changes of the nitride layer will be tried in order to improve corrosion resistance of the duplex treated 316L stainless steel.  相似文献   

16.
Ozone (O3) has been generated on Ni–Sb–SnO2/Ti electrode as anode immersed in acidic media at 25 °C by electrochemical process. The anode was electrochemically characterized by cyclic voltammetry and morphologically characterized by scanning electron microscopy (SEM) and X-ray diffraction. The concentration of dissolved ozone was determined by a UV/Vis spectrophotometer. The type of electrode with different times coating on the titanium mesh and different acid type and various concentrations (C acid) were used, and the stability of the electrode was investigated under the experimental conditions by SEM images. Results shows that higher efficiency (53.7%) for O3 generation by electrochemical oxidation of water were obtained in HClO4 (1 M) and an applied potential of 2.4 V vs. Ag/AgCl in 150 ml volume undivided electrochemical cell.  相似文献   

17.
Investigations of the geometric and electronic properties of ternary Ce-based heavy fermion systems CeT2X2 (T : Ni,Pd,Rh; X : Ge,Si) were carried out by means of electron spectroscopic methods. The main problem for these surface-sensitive techniques is the preparation of well-ordered and atomically clean surfaces. The ternary substance CeNi2Ge2 was grown on a W(110) substrate by MBE with subsequent annealing. A nearly layer-by-layer growth mode was detected using MEED. The annealed layers are ordered, but show small Ni2Ge crystalline islands. The composition was characterised by means of AES in dependence of the substrate as well as the annealing temperature. Electronic properties are investigated by angle resolved photoelectron spectroscopy. Received: 24 June 1996 / Revised: 23 December 1996 / Accepted: 31 December 1996  相似文献   

18.
The matching of charge transport layer and photoactive layer is critical in solar energy conversion devices, especially for planar perovskite solar cells based on the SnO2 electron‐transfer layer (ETL) owing to its unmatched photogenerated electron and hole extraction rates. Graphdiyne (GDY) with multi‐roles has been incorporated to maximize the matching between SnO2 and perovskite regarding electron extraction rate optimization and interface engineering towards both perovskite crystallization process and subsequent photovoltaic service duration. The GDY doped SnO2 layer has fourfold improved electron mobility due to freshly formed C?O σ bond and more facilitated band alignment. The enhanced hydrophobicity inhibits heterogeneous perovskite nucleation, contributing to a high‐quality film with diminished grain boundaries and lower defect density. Also, the interfacial passivation of Pb?I anti‐site defects has been demonstrated via GDY introduction.  相似文献   

19.
Here we report on the fabrication and characterization of ultra-thin nanocomposite layers used as gate dielectric in low-voltage and high-performance flexible organic thin film transistors (oTFTs). Reactive sputtered zirconia layers were deposited with low thermal exposure of the substrate and the resulting porous oxide films with high leakage currents were spin-coated with an additional layer of poly-α-methylstyrene (PαMS). After this treatment a strong improvement of the oTFT performance could be observed; leakage currents could be eliminated almost completely. In ellipsometric studies a higher refractive index of the ZrO2/PαMS layers compared to the “as sputtered” zirconia films could be detected without a significant enhancement of the film thickness. Atomic force microscopy (AFM) measurements of the surface topography clearly showed a surface smoothing after the PαMS coating. Further studies with X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) also indicated that the polymer definitely did not form an extra layer. The polymer chains rather (self-)assemble in the nano-scaled interspaces of the porous oxide film giving an oxide–polymer “nanocomposite” with a high oxide filling grade resulting in high dielectric constants larger than 15. The dielectric strength of more than 1 MV cm−1 is in good accordance with the polymer-filled interspaces.  相似文献   

20.
New solar cells with Ag/C60/MAPbI3/Cu2ZnSnSe4 (CZTSe)/Mo/FTO multilayered structures on glass substrates have been prepared and investigated in this study. The electron-transport layer, active photovoltaic layer, and hole-transport layer were made of C60, CH3NH3PbI3 (MAPbI3) perovskite, and CZTSe, respectively. The CZTSe hole-transport layers were deposited by magnetic sputtering, with the various thermal annealing temperatures at 300 °C, 400 °C, and 500 °C, and the film thickness was also varied at 50~300 nm The active photovoltaic MAPbI3 films were prepared using a two-step spin-coating method on the CZTSe hole-transport layers. It has been revealed that the crystalline structure and domain size of the MAPbI3 perovskite films could be substantially improved. Finally, n-type C60 was vacuum-evaporated to be the electronic transport layer. The 50 nm C60 thin film, in conjunction with 100 nm Ag electrode layer, provided adequate electron current transport in the multilayered structures. The solar cell current density–voltage characteristics were evaluated and compared with the thin-film microstructures. The photo-electronic power-conversion efficiency could be improved to 14.2% when the annealing temperature was 500 °C and the film thickness was 200 nm. The thin-film solar cell characteristics of open-circuit voltage, short-circuit current density, fill factor, series-resistance, and Pmax were found to be 1.07 V, 19.69 mA/cm2, 67.39%, 18.5 Ω and 1.42 mW, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号