首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

2.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

3.
We propose a simple scheme to generate two-mode entangled coherent state in two separated cavities and realize the entanglement reciprocation between the superconducting charge qubits and continuous-variable system. By measuring the state of charge qubits, we find that the entanglement of two charge qubits, which are initially prepared in the maximally entangled state, can be transferred to the two-cavity field, and at this time the two-cavity field is in the entangled coherent state. We also find that the entanglement can be retrieved back to the two charge qubits after measuring the state of the two-cavity field.   相似文献   

4.
We introduce a new genuinely 2N qubit state, known as the “mirror state” with interesting entanglement properties. The well known Bell and the cluster states form a special case of these “mirror states”, for N = 1 and N = 2 respectively. It can be experimentally realized using SWAP and multiply controlled phase shift operations. After establishing the general conditions for a state to be useful for various communicational protocols involving quantum and classical information, it is shown that the present state can optimally implement algorithms for the quantum teleportation of an arbitrary N qubit state and achieve quantum information splitting in all possible ways. With regard to superdense coding, one can send 2N classical bits by sending only N qubits and consuming N ebits of entanglement. Explicit comparison of the mirror state with the rearranged N Bell pairs and the linear cluster states is considered for these quantum protocols. We also show that mirror states are more robust than the rearranged Bell pairs with respect to a certain class of collisional decoherence.  相似文献   

5.
提出了两套三粒子纠缠态的纯化方案.第一个方案选择部分纠缠GHZ态作为量子通道,利用具有一个控制位和一个靶位的非局域控制非门操作和采用集体么正操作及适当地制备三粒子A,B和C的初始态,可以以最佳几率2|β|2获得最大三粒子纠缠态.第二个方案选择EPR对作为量子通道,通过利用具有一个控制位和两个靶位的非局域控制非门操作和采用集体么正操作及适当地制备三粒子A,B和C的初始态,可以以与第一个方案相同的几率获得最大三粒子纠缠态.两个方案都可以推广到N粒子纠缠态的纯化.  相似文献   

6.
7.
王美玉  闫凤利 《中国物理 B》2011,20(12):120309-120309
In this paper, we investigate perfect quantum teleportation and dense coding by using an 2N-qubit W state channel. In the quantum teleportation scheme, an unknown N-qubit entangled state can be perfectly teleported. One ebit of entanglement and two bits of classical communication are consumed in the teleportation process, just like when using the Bell state channel. While N+1 bits of classical information can be transmitted by only sending N particles in the dense coding protocol.  相似文献   

8.
量子隐形传态的杰出安全特性使其在未来的通讯领域充满潜力.量子力学的不确定性原理和不可克隆定理禁止对量子态进行直接复制,因此,量子隐形传态将量子态划分为经典和量子两部分,信息分别经由经典和量子通道从发送者Alice传递给远方的接收者Bob,根据这两种信息,Bob实行相应操作就可以以一定的几率重建初始传送态.利用一般意义的隐形传态方案,提出一种简便的新方法实现了一个N粒子任意态的概率传态.方法采用N个非最大纠缠的三粒子GHZ态作为量子通道,避免了引入额外的辅助粒子.为了实现传态,Alice将所有粒子分成N份,对第i份的粒子对(i,xi)实行Bell测量并将结果通过经典通道通知Bob,Bob对粒子(yi,zi)进行相应的操作就可以完成第i个粒子信息的传送.当完成N次相似的重复操作后,Bob就可以准确地重建初始传送态.文中以Bell态测量为基本手段,重复的操作同时也降低了实验难度,作为一个特例,文中给出了一个两粒子任意态的传态方案.  相似文献   

9.
We propose a simple scheme to generate two-mode entangled coherent state in two separated cavities and realize the entanglement reciprocation between the superconducting charge qubits and continuous-variable system. By measuring the state of charge qubits, we find that the entanglement of two charge qubits, which are initially prepared in the maximally entangled state, can be transferred to the two-cavity field, and at this time the two-cavity field is in the entangled coherent state. We also find that the entanglement can be retrieved back to the two charge qubits after measuring the state of the two-cavity field.  相似文献   

10.

In this paper, we present a scheme of bidirectional quantum controlled teleportation of three-qubit state by using GHZ states. Alice transmits an unknown three-qubit entangled state to Bob, and Bob transmit an unknown three-qubit entangled state to Alice via the control of the supervisor Charlie. In order to facilitate the implementation in the experimental environment, the preparation method of quantum channel is given. This scheme is based on that three-qubit entangled state are transformed into two-qubit entangled state and single qubit superposition state by using Toffoli Gate and Controlled-NOT operation, receivers can by introducing the appropriate unitary transformation and auxiliary particles to reconstruct the initial state. Finally, this paper is implemented a scheme of bidirectional quantum controlled teleportation of more than two qubits via the control of the supervisor Charlie.

  相似文献   

11.
Characterizing entanglement in all but the simplest case of a two qubit pure state is a hard problem, even understanding the relevant experimental quantities that are related to entanglement is difficult. It may not be necessary, however, to quantify the entanglement of a state in order to quantify the quantum information processing significance of a state. It is known that the fully entangled fraction has a direct relationship to the fidelity of teleportation maximized under the actions of local unitary operations. In the case of two qubits we point out that the fully entangled fraction can also be related to the fidelities, maximized under the actions of local unitary operations, of other important quantum information tasks such as dense coding, entanglement swapping and quantum cryptography in such a way as to provide an inclusive measure of these entanglement applications. For two qubit systems the fully entangled fraction has a simple known closed-form expression and we establish lower and upper bounds of this quantity with the concurrence. This approach is readily extendable to more complicated systems.  相似文献   

12.
孙勇  满忠晓  夏云杰 《中国物理 B》2009,18(5):1742-1748
This paper proposes a feasible scheme for the quantum teleportation of tripartite entangled coherent states by using linear optical devices such as beam splitters, phase shifters and photo detectors. The scheme is based on the bipartite maximally entangled coherent state and the tripartite entangled coherent state with bipartite maximal entanglement as quantum channels. It shows that when the mean number of photons is equal to 2, the total minimum of the average fidelity for an arbitrary tripartite entangled state is 1-0.67×10 -3.  相似文献   

13.
A new scheme for controlled teleportation with the help of a four-qubit cluster state is proposed. In this scheme, a four-particle cluster state is shared by a sender, a controller and a receiver. The sender first performs a Bell-basis measurement on the qubits at hand, and the controller performs measurements under a non-maximally entangled Bell-basis after he knows the sender’s measurement result. Then the receiver introduces an auxiliary qubit and performs some appropriate unitary transformations on his qubits. Quantum teleportation is realized after the receiver performs a local measurement on the auxiliary qubit and an appropriate unitary transformation on his qubit.  相似文献   

14.
三粒子纠缠相干态的隐形传态   总被引:19,自引:9,他引:10  
提出了一个利用一个两粒子最大纠缠相干态和一个三粒子纠缠相干态作为量子信道进行三粒子纠缠相干态隐形传态的方案.该方案只需线性光学操作和双模光子数测量.计算结果表明,应用本方案的设置,隐形传态成功的概率与所用的相干态的平均光子数有关,反映了纠缠相干态的非正交特性.  相似文献   

15.
We study quantum teleportation of single qubit information state using 3-qubit general entangled states. We propose a set of 8 GHZ-like states which gives (i) standard quantum teleportation (SQT) involving two parties and 3-qubit Bell state measurement (BSM) and (ii) controlled quantum teleportation (CQT) involving three parties, 2-qubit BSM and an independent measurement on one qubit. Both are obtained with perfect success and fidelity and with no restriction on destinations (receiver) of any of the three entangled qubits. For SQT, for each designated one qubit which is one of a pair going to Alice, we obtain a magic basis containing eight basis states. The eight basis states can be put in two groups of four, such that states of one group are identical with the corresponding GHZ-like states and states of the other differ from the corresponding GHZ-like states by the same phase factor. These basis states can be put in two different groups of four-states each, such that if any entangled state is a superposition of these with coefficients of each group having the same phase, perfect SQT results. Also, for perfect CQT, with each set of given destinations of entangled qubits, we find a different magic basis. If no restriction on destinations of any entangled qubit exists, three magic semi-bases, each with four basis states, are obtained, which lead to perfect SQT. For perfect CQT, with no restriction on entangled qubits, we find four magic quarter-bases, each having two basis states. This gives perfect SQT also. We also obtain expressions for co-concurrences and conditional concurrences.  相似文献   

16.
A 1→2 telecloning solution for an arbitrary three-particle entangled W state is proposed in which two four-particle entangled states are used as quantum channels. It is proposed that the three-particle W state can be telecloned based on the quantum teleportation and the local copying of entanglement, and the fidelity of each clone depends on the input state. This scheme can be generalized into the case of 1→N (N>2) telecloning of an arbitrary three-particle W state. Furthermore, another scheme for 1→N (N≥2) telecloning of an arbitrary n-particle (n≥4) W state is proposed, the multi-bit controlled-NOT (CNOT) gates and additional particles are needed in this case. Project 10574060 supported by the National Natural Science Foundation of China.  相似文献   

17.
We report observations of entanglement of two remote atomic qubits, achieved by generating an entangled state of an atomic qubit and a single photon at site , transmitting the photon to site in an adjacent laboratory through an optical fiber, and converting the photon into an atomic qubit. Entanglement of the two remote atomic qubits is inferred by performing, locally, quantum state transfer of each of the atomic qubits onto a photonic qubit and subsequent measurement of polarization correlations in violation of the Bell inequality [EQUATION: SEE TEXT]. We experimentally determine [EQUATION: SEE TEXT]. Entanglement of two remote atomic qubits, each qubit consisting of two independent spin wave excitations, and reversible, coherent transfer of entanglement between matter and light represent important advances in quantum information science.  相似文献   

18.
We propose a scheme for teleportation of an arbitrary two-mode N-photon entangled states in cavity QED. The scheme is based on the resonant interaction between Λ-type atoms and two-mode cavity fields. In contrast to all the theoretical schemes proposed previously in cavity QED for teleportation of two-mode cavity field states, in the present scheme, the established entanglement for the quantum channel is the type of the multi-dimensional entanglement between the symmetric multi-atom Dicke states and two-mode N-photon states. Therefore, the scheme extends the scope of the theoretical study of the teleportation.  相似文献   

19.
The entanglement of two atomic qubits, which are coupled to a coherent state field with different couplings, is studied. The dynamical evolution of the concurrence, which measures the degree of the entanglement between the two qubits, is plotted versus the scaled time gt. It is found that the two qubits can be entangled by the coherent state field even when they are initially prepared in the most mixed state, and for very weak field, the most mixed state can be more easily entangled than some pure states. It is also found that the entanglement between the qubits sensitively depends on the relative difference of the atomic couplings and the mean photon number of the field.  相似文献   

20.
We propose a simple scheme to generate χ-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR). The coupling between the superconducting qubit and the TLR can be effectively controlled by properly adjusting the control parameters of the charge qubit. The experimental feasibility of our scheme is also shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号