首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have synthesized two cyclam‐cored dendrimers appended with dendrons of two different types by proper protection/deprotection of the cyclam unit. The resulting dendrimers contain six naphthyl and two dansyl units ( N6 D2 ) or two dansyl and six naphthyl units ( N2 D6 ) at the periphery. Their photophysical properties have been compared to those of a dendrimer containing 8 dansyl units ( D8 ) and a previously investigated dendrimer containing 8 naphthyl units ( N8 ). The absorption spectra are those expected on the basis of the number of chromophores, demonstrating that no ground state interaction takes place. The emission spectra of N2 D6 and N6 D2 show naphthalene localized and naphthalene excimer emission similar to those observed in the case of N8 , together with a much stronger dansyl emission with maximum at 525 nm. Addition of CF3SO3H to dendrimer solutions in CH3CN/CH2Cl2 1:1 (v/v) leads to protonation of the aliphatic amine units of the cyclam core at first and then of the aromatic amine of each dansyl chromophores. Cyclam can be diprotonated and this affects dansyl absorption and, most significantly, emission bands by a charge perturbation effect. Each dansyl unit is independently protonated in both dendrimers. The most interesting photophysical feature of these heterofunctionalized cyclam‐cored dendrimers is the occurrence of an intradendrimer photoinduced energy transfer from naphthyl to dansyl chromophores of two different dendrons (interdendron mechanism). The efficiency of this process is 50 % for N6 D2 and it can be increased up to 75 % upon protonation of the cyclam core and formation of N6 D2 (2H+). This arises from the fact that protonation of the amine units of the cyclam prevents formation of exciplexes upon naphthyl excitation, thus shutting down one of the deactivation processes of the fluorescent naphthyl excited state.  相似文献   

2.
We have investigated the formation of metal complexes between Zn2+ and two derivatives, 1 and 2, of the well-known 1,4,8,11-tetraazacyclotetradecane (cyclam) ligand. Compound 1 is 1,4,8,11-tetrakis(naphthylmethyl) cyclam, and compound 2 is a dendrimer consisting of a cyclam core with appended 12 dimethoxybenzene and 16 naphthyl units. Compound 1 exhibits an emission band with a maximum around 480 nm, assigned to the formation of exciplexes between amine and excited naphthyl units. Dendrimer 2 exhibits three types of weak emission bands, assigned to naphthyl localized excited states (lambdamax = 337 nm), naphthyl excimers (lambdamax ca. 390 nm), and naphthyl-amine exciplexes (lambdamax = 480 nm). In CH3CN-CH2Cl2 1:1 v/v, titration of ligand 1 with Zn2+ causes the disappearance of the exciplex emission and the appearance of a strong naphthyl localized fluorescence; the titration plot is linear and reaches a plateau for a 1:1 stoichiometry, showing that a highly stable [Zn(1)]2+ complex is formed. In the case of 2, titration with Zn2+ causes the disappearance of the exciplex band, with a concomitant increase in the excimer and naphthyl localized emissions; the titration plot is again linear, but in this case it reaches a plateau for a 2:1 stoichiometric ratio, showing the unexpected formation of a [Zn(2)2]2+ complex. Such an unexpected stoichiometry for the complex of the dendritic ligand has been fully confirmed by 1H NMR titrations. The results obtained show that the dendrimer branches not only do not hinder, but in fact favor coordination of cyclam to Zn2+.  相似文献   

3.
We have investigated the complexation of lanthanide ions (Nd3+, Eu3+, Gd3+, Tb3+, Dy3+) with three cyclam-based ligands (cyclam = 1,4,8,11-tetraazacyclotetradecane), namely 1,4,8,11-tetrakis(naphthylmethyl)cyclam (1), and two dendrimers consisting of a cyclam core appended with four dimethoxybenzene and eight naphthyl units (2) and twelve dimethoxybenzene and sixteen naphthyl units (3). In the free ligands the fluorescence of the naphthyl units is strongly quenched by exciplex formation with the cyclam nitrogens. Complexation with the metal ions prevents exciplex formation and revives the intense naphthyl fluorescence. Fluorescence and NMR titration experiments have revealed the formation of complexes with different metal/ligand stoichiometries in the case of 1, 2 and 3. Surprisingly, the large dendrimer 3 gives rise to a stable [M(3)3]3+ species. Energy transfer from the lowest singlet and triplet excited states of the peripheral naphthyl units to the lower lying excited states of Nd3+, Eu3+, Tb3+, Dy3+ coordinated to the cyclam core does not take place.  相似文献   

4.
曾毅  李迎迎  袁钊  李嫕 《化学学报》2009,67(23):2714-2720
合成了外围修饰有萘基团的0~3代聚酰胺-胺树枝形聚合物GnN (n=0~3), 化合物通过了IR, 1H NMR, 13C NMR和MALDI TOF的表征. 稳态光物理研究表明, 甲醇溶液中GnN外围萘基团与骨架胺之间发生电子转移过程, 形成最大发射峰在450 nm的激基复合物, 萘的荧光被明显猝灭; 当GnN骨架被质子化, 分子内光致电子转移过程和萘与骨架胺基间激基复合物的形成被抑制, 萘单体荧光发射大大增强; 由于质子化后树枝形聚合物骨架趋于伸展构象, 外围萘基团间相互作用增强, 部分形成最大发射峰在400 nm的激基缔合物.  相似文献   

5.
Complexation of Zn(II) ions by cyclam cored dendrimers appended with four (G0), eight (G1) and 16 naphthyl chromophores (G2) at the periphery have been investigated in CH?CN-CH?Cl? 1?:?1 (v/v) solution by absorption and emission, ESI-mass and 1H NMR spectroscopy. The results obtained can be interpreted by the formation of complexes of 2?:?1 dendrimer to metal stoichiometry, at low metal ion concentration, and 1?:?1 complexes upon further addition of Zn(II) ions, for all the dendrimer generations. Upon addition of a molecular clip C2? consisting of two anthracene sidewalls bridged by a benzene group with two sulfate substituents in the para positions, heteroleptic complexes of general formula [GnZnC] are formed. Interestingly, in these complexes, a very efficient quenching (practically 100%) of the dendrimer naphthyl luminescence and sensitization (ca. 90%) of the clip anthracene emission take place. The complex [G2ZnC] exhibits a very high molar absorption coefficient in the UV spectral region owing to the 16 naphthyl chromophores of the dendrimer and the two anthracene units of the clip (ε = 1.7 × 10? M?1 cm?1 at 263 nm). Furthermore, the excitation energy absorbed by the naphthyl chromophores is efficiently funneled to the two anthracene units of the clip, which emits in the blue spectral region.  相似文献   

6.
The photochemical and photophysical behavior of two dendrimers consisting of a benzophenone core and branches that contain dimethoxybenzene units has been investigated. Such dendrimers can undergo a variety of photochemical and photophysical processes, namely: 1) quenching of the fluorescence and phosphorescence of the dimethoxybenzene units by energy transfer to the benzophenone core (antenna effect), 2) direct and sensitized phosphorescence (and delayed fluorescence) of the benzophenone core, 3) hydrogen abstraction by the triplet excited state of the benzophenone core from solvent molecules, 4) intramolecular hydrogen abstraction by the triplet excited state of the benzophenone core from the dendrimer branches, 5) quenching of the phosphorescence and hydrogen abstraction reaction of the benzophenone core by energy transfer to terbium ions and dioxygen; 6) conversion of the UV light absorbed by the dendrimer branches into visible (Tb3+) or near infrared (O2) emission via the sequence of processes 1) and 5). The results obtained emphasize the great potential of suitably designed dendrimers for a multiple use of light signals.  相似文献   

7.
李鹏  曾毅  陈金平  李迎迎  李嫕 《化学学报》2012,70(15):1611-1616
设计合成了0~4代外围修饰激发态分子内质子转移(ESIPT)发色团的聚酰胺-胺树枝形聚合物G0~G4,化合物结构经过IR,1H NMR,13C NMR和MS表征.稳态光谱研究表明,树枝形聚合物在四氢呋喃溶液中形成了聚集体,发色团酮式发光随着化合物代数增大呈先增加后减小的变化.质子化树枝形聚合物G1-H~G4-H能溶于水,并在水中形成20 nm左右的聚集体,发色团在聚集体疏水区中构象受限,仅发射酮式发光,并且发光强度受树枝形聚合物分子大小的影响.  相似文献   

8.
A poly(amine ester) dendrimer with naphthyl units (G1N6) has been synthesized as a fluorescent chemosensor for metal ions. We investigated the metal-ion recognition of G1N6 by adding each of Ag(+), Al(3+), Ba(2+), Ca(2+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Mg(2+), Ni(2+), and Zn(2+) in acetonitrile solution. Large changes were observed in the fluorescence spectra of G1N6 upon the addition of Al(3+), Cu(2+), and Zn(2+).  相似文献   

9.
We have synthesized a dendrimer (1) consisting of a 1,4,8,11-tetraazacyclotetradecane (cyclam) core, appended with four benzyl substituents that carry, in the 3- and 5-positions, a dansyl amide derivative (of type 2), in which the amide hydrogen is replaced by a benzyl unit that carries an oligoethylene glycol chain in the 3- and 5-positions. All together, the dendrimer contains 16 potentially luminescent moieties (eight dansyl- and eight dimethoxybenzene-type units) and three distinct types of multivalent sites that, in principle, can be protonated or coordinated to metal ions (the cyclam nitrogen atoms, the amine moieties of the eight dansyl units, and the 16 oligoethylene glycol chains). We have studied the absorption and luminescence properties of 1, 2, and 3 in acetonitrile and the changes taking place upon titration with acid and a variety of divalent (Co2+, Ni2+, Cu2+, Zn2+), and trivalent (Nd3+, Eu3+, Gd3+) metal ions as triflate and/or nitrate salts. The results obtained show that: 1) double protonation of the cyclam ring takes place before protonation of the dansyl units; 2) the oligoethylene glycol chains do not interfere with protonation of the cyclam core and the dansyl units in the ground state, but affect the luminescence of the protonated dansyl units; 3) the first equivalent of metal ion is coordinated by the cyclam core; 4) the interaction of the resulting cyclam complex with the appended dansyl units depends on the nature of the metal ion; 5) coordination of metal ions by the dansyl units follows at high metal-ion concentrations; 6) the effect of the metal ion depends on the nature of the counterion. This example demonstrates that dendrimers may exhibit complete functionality resulting from the integration of the specific properties of their component units.  相似文献   

10.
We have synthesized two dendrimers (4 and 5) consisting of a 1,4,8,11-tetraazacyclotetradecane (cyclam) core appended with four dimethoxybenzene and eight naphthyl units (4) and 12 dimethoxybenzene and 16 naphthyl units (5). The absorption and luminescence spectra of these compounds and the changes taking place upon protonation of their cyclam core have been investigated. In acetonitrile-dichloromethane 1:1 v/v solution they exhibit three types of emission bands, assigned to naphthyl localized excited states (λmax=337 nm), naphthyl excimers (λmax ca 390 nm), and naphthyl-amine exciplexes (λmax=480 nm). The tetraamine cyclam core undergoes only two protonation reactions, whose constants have been obtained by fitting the spectral changes. Protonation not only prevents exciplex formation for electronic reasons, but also causes strong nuclear rearrangements in the cyclam structure which affect excimer formation between the peripheral naphthyl units of the dendrimers.  相似文献   

11.
The synthesis, protonation behavior, and Cu2+ and Zn2+ coordination chemistry of the novel bibrachial aza lariat ether (naphthalen-1-ylmethyl)[2-(20-[2-[(naphthalen-1-ylmethyl)amino]ethyl]-3,6,9,17,20,23,29,30-octaazatricyclo[23.3.1.1*11,15*]triaconta-1(29),11(30),12,14,25,27-hexaen-6-yl)ethyl]amine (L) are discussed. The macrocycle, which has two aminoethyl naphthyl moieties symmetrically appended to a 2:2 azapyridinophane structure, displays, in the pH range 2-11, six protonation steps that correspond to the protonation of the secondary amino groups. Steady-state fluorescence measurements show emissions due to the monomer and to the excimer formed between the two naphthalene fragments of the macrocycle. The time-resolved fluorescence data, obtained by the time-correlated single photon counting technique, show that a significant percentage of excimer is preformed as ground-state dimers. The ligand L forms with the metal ions Cu2+ and Zn2+ mono- and dinuclear complexes in aqueous solution. The influence of metal coordination in the fluorescence emission of L is analyzed. The acid-base, coordination capabilities, and emissive behavior of L are compared with those presented by its synthetic precursor L1, which has a tripodal tris(2-aminoethyl)amine structure functionalized at one of its terminal amino groups with a naphthyl moiety.  相似文献   

12.
Fluorescence emission from dendrimers and its pH dependence   总被引:2,自引:0,他引:2  
A strong fluorescence emission was observed from different kinds of dendrimers under acidic condition. There was a remarkable difference in fluorescence properties between second and fourth generation NH2-terminated poly(amido amine) dendrimers. It can be assumed that the backbone of the dendrimer played the key role in forming the novel fluorescent center.  相似文献   

13.
We have investigated the complexation of Zn(2+) with 1,4,8,11-tetrakis(naphthylmethyl) cyclam (1; cyclam=1,4,8,11-tetraazacyclotetradecane) and with two dendrimers consisting of a cyclam core with four dimethoxybenzene and eight naphthyl appendages (2), and twelve dimethoxybenzene and sixteen naphthyl appendages (3). An important, common feature of model compound 1 and dendrimers 2 and 3 is that their potentially fluorescent naphthyl units are quenched by exciplex formation with the cyclam nitrogen atoms. Complexation with Zn(2+), however, prevents exciplex formation and results in the appearance of an intense naphthyl fluorescence signal that can be used for monitoring the complexation process. Luminescence titration, together with competition experiments and (1)H NMR titration, have shown that 1:1 and 1:2 (metal/ligand) complexes are formed in the cases of 2 and 3, whereas model compound 1 gives only a 1:1 complex. We have also investigated the 1:1 complexation kinetics by the stopped-flow technique. In the case of 1, a second-order process (k(1)=44x10(5) M(-1) s(-1)) is followed by two consecutive first-order steps (k(2)=0.53 s(-1) and k(3)=0.10 s(-1)). For 2, a slower second-order process (k(1)=4.9x10(5) M(-1) s(-1)) is followed by a slow first-order step (k(2)=0.40 s(-1)). In the case of 3, only a very slow second-order process was observed (k(1)=1.2x10(5) M(-1) s(-1)). The different metal-ion incorporation rates for model compound 1 and dendrimers 2 and 3 have been discussed in terms of conformational changes of the dendron subunits affecting the chelating properties of the cyclam core. This work reports the first kinetic study on metal-ion coordination by dendrimers with a well-defined coordination site.  相似文献   

14.
We have investigated the fluorescence properties of dendrimers (Gn is the dendrimer generation number) containing four different luminophores, namely terphenyl (T), dansyl (D), stilbenyl (S), and eosin (E). In the case of T, the dendrimers contain a single p-terphenyl fluorescent unit as a core with appended sulfonimide branches of different size and n-octyl chains. In the cases of D and S, multiple fluorescent units are appended in the periphery of poly(propylene amine) dendritic structures. In the case of E, the investigated luminophore is noncovalently linked to the dendritic scaffold, but is encapsulated in cavities of a low luminescent dendrimer. Depending on the photophysical properties of the fluorescent units and the structures of the dendrimers, different mechanisms of fluorescence depolarization have been observed: (i) global rotation for GnT dendrimers; (ii) global rotation and local motions of the dansyl units at the periphery of GnD dendrimers; (iii) energy migration among stylbenyl units in G2S; and (iv) restricted motion when E is encapsulated inside a dendrimer, coupled to energy migration if the dendrimer hosts more than one eosin molecule.  相似文献   

15.
The synthesis of a series of poly(aromatic amide) dendrimers up to the second generation is described herein. The AB(2) building block used throughout the synthesis of the dendrimers was the allyl ester of 3,5-diaminocinnamic acid, which has been synthesized from 3,5-dinitrobenzoic acid in good yield with use of a four-step procedure. Dendron synthesis was achieved via a convergent approach with use of a sequence of deprotection/coupling steps. Two commercially available alcohols, L-menthol and citronellol, were coupled to the AB(2) monomer by using an alkyl diacid spacer and two core units; 1,7-diaminoheptane and tris(2-aminoethyl)amine have been used to produce the final dendrimers. Characterization was carried out by NMR and IR spectroscopies, MALDI-TOF mass spectrometry, GPC, and DSC. The novel monomer and dendritic derivatives exhibited a strong fluorescence emission in the visible region (lambda approximately 500 nm) of the spectrum and a weak emission in the near-infrared (lambda approximately 850 nm) upon excitation in the near-UV region. The fluorescence emission characteristics were found to be solvent and dendrimer generation dependent.  相似文献   

16.
We have prepared supramolecular assemblies of hexaaryl-anchored polyester zinc(II) porphyrin dendrimers (6P(Zn)W, 12P(Zn)W, and 24P(Zn)W) with various bipyridyl guests (C(n)Py2; n = 1, 2, 4, 6, and 8) through self-assembled coordination to control the structures and photophysical properties. We comparatively investigated the photophysical properties of porphyrin dendrimers with and without guest binding by using ensemble and single-molecule spectroscopy. The spectrophotometric titration data of dendrimers with guest molecules provide a strong indication of the selective intercalation of bipyridyl guests into porphyrin dendrimers. The representative dendrimer assembly 12P(Zn)W [symbol: see text] C6Py2 exhibits increased fluorescence quantum yield and lifetime in ensemble measurements, as well as higher initial photon count rates with stepwise photobleaching behavior in the single-molecule fluorescence intensity trajectories (FITs) compared to 12P(Zn)W. At the single-molecule level, the higher photostability of 12P(Zn)W [symbol: see text] C6Py2 can be deduced from the long durations of the first emissive levels in the FITs. We attribute the change in photophysical properties of the dendrimer assemblies to their structural changes upon intercalation of guest molecules between porphyrin units. These results provide new insight into the control of porphyrin dendritic structures using appropriate bidentate guests in poor environmental conditions.  相似文献   

17.
A strong fluorescence emission from poly(amido amine) (PAMAM) dendrimers with different terminal groups or a poly(propylene imine) (PPI) dendrimer was studied under different conditions by varying experimental parameters such as pH value, aging time, temperature, and concentration. The increase of fluorescence intensity was fast at low pH or high temperature but linear with respect to dendrimer concentration. It was reasonable that the formation of a fluorescence-emitting moiety had a close relation to protonated tertiary amine groups in PAMAM or PPI dendrimers. Furthermore, oxidation of the tertiary amines was confirmed to play an important role, which was evidently caused by oxygen in air. The results of fluorescence decay indicated that the deactivation of luminescence was raised with increasing temperature. Dendrimers emitted blue photoluminescence along fiber chain templates on a fluorescent microscope.  相似文献   

18.
Poly(amide amine) dendrimer with naphthyl units (N8) as a fluorescent chemosensor for metal ions was synthesized. We investigated the metal ion recognition of N8. Large changes in the fluorescence spectra of N8 were observed upon the addition of cadmium and zinc ions.  相似文献   

19.
Polyglutamic dendritic porphyrins of the general formula H2PophGlu(N)OR (H2Porph = free-base meso-tetra-4-carboxyphenylporphyrin (H2TCPP), Glu=dendrimer layer composed of L-glutamates, N= 1-3: dendrimer generation number, R = terminal group (All, H)) were synthesized and characterized with NMR and MALDI-TOF mass spectroscopy. The free-acid terminated compounds were found to be highly soluble in water, with both their absorption and fluorescence spectra dependent on pH. The value of the porphyrin mono-protonation constant, measured by fluorescence rationing, increased monotonously in the studied series of dendrimers (pK3=6.31. 6.70, and 6.98, for N=1, 2, 3, respectively). For the largest dendrimer, H2PorphGlu(3)OH, pK3 was found shifted by almost two pH units relative to the non-modified H2Porph. The second protonation constant (K4) was much less affected by the dendritic substituents. At pH values less than 3.5 there were noticeable changes in fluorescence intensity and quantum yield even for the highly soluble H2PorphGlu(3)OH. This suggests that interactions between individual dendritic molecules in solution are favored by full protonation of the peripheral glutamic carboxyls. The "dendrimer-protected" porphyrins are convenient fluorescent pH sensors in the biological pH range.  相似文献   

20.
Protonation and Zn(II), Cd(II) and Hg(II) coordination with the ligand 5-aminoethyl-2,5,8-triaza-[9]-10,23-phenanthrolinophane (L2), which contains an aminoethyl pendant attached to a phenanthroline-containing macrocycle, have been investigated by means of potentiometric, 1H NMR and spectrofluorimetric titrations in aqueous solutions. The coordination properties of L2 are compared with those of the ligand 2,5,8-triaza-[9]-10,23-phenanthrolinophane (L1). Ligand protonation occurs on the aliphatic amine groups and does not involve directly the heteroaromatic nitrogens. The fluorescence emission properties of L2 are controlled by the protonation state of the benzylic nitrogens: when not protonated, their lone pairs are available for an electron transfer process to the excited phenanthroline, quenching the emission. As a consequence, the ligand is emissive only in the highly charged [H3L2]3+ and [H4L2]4+ species, where the benzylic nitrogens are protonated. Considering metal complexation, both [ML1]2+ and [ML2]2+ complexes (M = Zn(II) and Cd(II)) are not emissive, since the benzylic nitrogens are weakly involved in metal coordination, and, once again, they are available for quenching the fluorescence emission. Protonation of the L2 complexes to give [MHL2]3+ species, instead, leads to a recovery of the fluorescence emission. Complex protonation, in fact, occurs on the ethylamino group and gives a marked change of the coordination sphere of the metals, with a stronger involvement in metal coordination of the benzylic nitrogens; consequently, their lone pairs are not available for the process of emission quenching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号