首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

This paper presents studies on direct non-destructive determination of uranium in sintered deeply depleted (DD) uranium oxide (UO2) pellets by wavelength dispersive X-ray fluorescence (WDXRF) spectrometry. A special collet was designed and fabricated for holding the sintered DDUO2 pellets for direct analysis, thus avoiding the sample preparation steps. The samples were analyzed using a calibration plot obtained from WDXRF spectra of matrix matched calibration standards. The WDXRF determined uranium values were found to be in very close agreement with titrimetric values and has reproducibility better than 0.05% (RSD, 1 s, n = 10) for the sintered DDUO2 pellets having U: 86.81–88.04 wt%.

  相似文献   

2.
A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of 237Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry. 238U can interfere with 239Pu measurement by ICP-MS as 238UH+ mass overlap and 237Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4?C6 h, and can also be used for emergency response. 239Pu, 242Pu and 237Np were measured by ICP-MS, while 236Pu, 238Pu, and 239Pu were measured by alpha spectrometry.  相似文献   

3.
A comparative study of source preparation techniques to determine uranium isotopic composition by alpha spectrometry, namely electrodeposition and chemical stripping with polymeric membranae containing trioctylphosphine oxide (TOPO), is presented. The mean yield obtained for electrodeposition and TOPO deposition were 85% and 74%, respectively. The mean activity ratio235U/238U were 0.044 and 0.042 and the ratio234U/238U were 0.994 and 1.009, using electrodeposition and TOPO deposition techniques, respectively. The method of uranium separation from urine using an ion-exchange resin Dowex 1×8, chloride form and citrate form, was also studied. The obtained global yields of these methods were 50% and 41%, respectively.  相似文献   

4.
It is well known that ammunition containing depleted uranium (DU) was used by NATO during the Balkan conflict. To evaluate the origin of DU (the enrichment of natural uranium or the reprocessing of spent nuclear fuel) it is necessary to directly detect the presence of activation products ((236)U, (239)Pu, (240)Pu, (241)Am, and (237)Np) in the ammunition. In this work the analysis of actinides by alpha-spectrometry was compared with that by inductively coupled plasma mass spectrometry (ICP-MS) after selective separation of ultratraces of transuranium elements from the uranium matrix. (242)Pu and (243)Am were added to calculate the chemical yield. Plutonium was separated from uranium by extraction chromatography, using tri- n-octylamine (TNOA), with a decontamination factor higher than 10(6); after elution plutonium was determined by ICP-MS ((239)Pu and (240)Pu) and alpha-spectrometry ((239+240)Pu) after electroplating. The concentration of Pu in two DU penetrator samples was 7 x 10(-12) g g(-1) and 2 x 10(-11) g g(-1). The (240)Pu/(239)Pu isotope ratio in one penetrator sample (0.12+/-0.04) was significantly lower than the (240)Pu/(239)Pu ratios found in two soil samples from Kosovo (0.35+/-0.10 and 0.27+/-0.07). (241)Am was separated by extraction chromatography, using di(2-ethylhexyl)phosphoric acid (HDEHP), with a decontamination factor as high as 10(7). The concentration of (241)Am in the penetrator samples was 2.7 x 10(-14) g g(-1) and <9.4 x 10(-15) g g(-1). In addition (237)Np was detected at ultratrace levels. In general, ICP-MS and alpha-spectrometry results were in good agreement.The presence of anthropogenic radionuclides ((236)U, (239)Pu,(240)Pu, (241)Am, and (237)Np) in the penetrators indicates that at least part of the uranium originated from the reprocessing of nuclear fuel. Because the concentrations of radionuclides are very low, their radiotoxicological effect is negligible.  相似文献   

5.
Urine assay is the preferred method for monitoring accidental or chronic internal intake of uranium into the human body. A new radiochemical separation procedure has been developed to provide isotopic uranium analysis in urine samples. In the procedure, uranium is co-precipitated with hydrous titanium oxide (HTiO) from urine matrix, and is then purified by anion exchange chromatographic column. Alpha spectrometry is used for isotopic uranium analysis after preparation of a thin-layer counting source by cerium fluoride micro-precipitation. Replicate spike and procedural blank samples were prepared and measured to validate the procedure. The 232U tracer was utilized for chemical recovery correction, and an average recovery of 76.2 ± 8.1% was found for 1400 mL urine samples. With 48 h of counting, the minimum detectable activity concentrations were determined to be 0.43, 0.21 and 0.42 mBq/L for 238U, 235U and 234U, respectively.  相似文献   

6.
During this work selective separation of uranium from rock phosphate and columbite mineral was done before its quantitative estimation by using Inductively Coupled Plasma Optical Emission Spectrometery (ICP-OES). Uranium from the rock phosphate and columubite was extracted by sodium peroxide fusion followed by leaching in 2 M HNO3. To avoid spectral interference in the estimation of uranium by ICP-OES, the selective separation of uranium from the leachate was carried out by using two different extractants, 30% Tributyl Phophates (TBP) in CCl4 and a equi-volume mixture of Di(2-ethylhexyl) phosphoric acid (D2EHPA) & TBP in petrofin. Uranium was stripped from the organic phase by using 1 M ammonium carbonate solution. Determination of uranium by ICP-OES was done after dissolving the residue left after evaporation of ammonium carbonate solution in 4% HNO3. The concentration of the uranium observed in the rock phosphates samples was 40–200 μg g−1 whereas in columbite samples the concentration range was 100–600 μg g−1. Uranium concentration evaluated by ICP-OES was complimented by gamma & alpha spectrometry. Concentration of uranium evaluated by gamma spectrometry in case of rock phosphate and coulmbite was in close agreement with the uranium content obtained by ICP-OES. Uranium determination by alpha spectrometry showed only minor deviation (1–2%) from the results obtained by ICP-OES in case of rock phosphates whereas in case of coulmbites results are off by 20–30%.  相似文献   

7.
A new approach for the determination of elemental uranium in uranium bearing ore, using high resolution -ray spectrometry, was applied. Using a variant of the enrichment technique an agreement of better than 1% has been obtained between -ray measurement results and a certified value obtained by other analytical methods. For the calibration of the -ray spectrometer uranium reference samples have been used which are made available jointly in Europe and the USA as Certified Reference Materials for Gamma-Ray Spectrometry (EC NRM 171 and NBS SRM 969, respectively). The measured ore has been put in a special designed container which ensured in all directions seen from the radiation window an uniform degree of infinite thickness of about 95%. The results can be taken as an example for the applicability of -ray spectrometry when high accuracy is required and under conditions were homogeneously distributed elemental uranium is embedded in larger amount of matrix material.  相似文献   

8.
We have studied the uptake of237Np in marine plants and animals belonging to several phyla, and collected samples from the end of January 1986 to March 1986, in a sampling station situated near the outlet of the irradiated fuel reprocessing plant at La Hague.We determined the237Np by neutron activation analysis. This method is very sensitive, with a limit of detection of 5×10–10 mg, 1.3×10–2 mBq. The method consists of the following steps:Reduction of the neptunium to the tetravalent state by treatment with a mixture of hydrazine sulfate and ferrous iron-chromatographic separations on Dowex 1×10 resin in a nitric medium, then in a hydrochloric medium-neutron irradiation in a nuclear reactor-purification of the neptunium by chromatography on Dowex 1×10 resin in a nitric then hydrochloric medium-measurement of the isotope238Np by gamma ray spectrometry using a Ge(Li) detector. The species were collected at Goury, at the northwest extremity of the Cotentin Peninsula, 5 km from the outlet of the reprocessing plant at La Hague. The levels of237Np were as follows: red algaeCorallina officinalis 64 mBq kg–1 wet weight; andChondrus crispus 18 mBq kg–1 wet weight; the spongeHalichondria panicea 14 mBq kg–1 wet weight; the ascidianDendrodoa grossularia 12 mBq kg–1 wet weight. The bivaive molluscsPatella vulgata andGibbula umbilicalis (the flesh ofP. vulgata andG. umbilicalis: 4 and 7 mBq kg–1 wet weight respectively) also prove to be interesting biological indicatorsThe transfer modes of237Np to the various species as a function of their trophic levels are discussed as well as the distribution among the organs in the species consumed and the radiological impact of human consumption.  相似文献   

9.
A radiochemical procedure is developed for the determination of 237Np in soil with multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) and gamma-spectrometry. 239Np (milked from 243Am) was used as an isotopic tracer for chemical yield determination. The neptunium in the soil is separated by thenoyl-trifluoracetone extraction from 1 M HNO3 solution after reducing Np to Np(IV) with ferrous sulfamate, and then purified with Dowex 1 × 2 anion exchange resin. 239Np in the resulting solution is measured with gamma-spectrometry for chemical yield determination while the 237Np is measured with MC-ICP-MS. Measurement results for soil samples are presented together with those for two reference samples. By comparing the determined value with the reference value of the 237Np activity concentration, the feasibility of the procedure was validated.  相似文献   

10.
11.
An efficient analytical method for the determination of low-levels of226Ra and224Ra by alpha spectrometry is described. A cation exchange column was used to separate the analyte from other constituents in the sample (1–50 mL). After preconcentration and separation, the radium was electrodeposited onto a stainless steel disc from a solution of ammonium oxalate and hydrochloric acid. The electrodeposition was accomplished by the addition of platinum in microgram amounts. Linear responses were greater than two orders of magnitude. Detection limits of the procedure, taken as three times the standard deviation of several reagent blank analyses, were (1.8±0.3)×10–4 Bq and (2.9±0.3)×10–4 Bq for226Ra and224Ra, respectively. Recoveries of226Ra and224Ra ranged from 90% to 100% when samples of drinking water, well water, and dissolved bones were analyzed. Precision was calculated to be less than 5% for the determination of226Ra. Matrix effects were studied for salts of barium, magnesium, iron, and calcium.  相似文献   

12.
A direct evaporation method is described for the preparation of sources using stainless steel as the backing material and tetraethylene glycol (TEG) as a spreading agent in the presence of large amounts of uranium. It is shown that FWHM and tail contribution at the low energy peak due to energy degradation of the high energy peak can be optimized by heating the source under controlled conditions in a furnace at 500–600°C for about 15 min. An accuracy of 0.5–1% is demonstrated for the determination of238Pu/(239Pu+240Pu) alpha activity ratio in the U/Pu range of 10 to 1500 generally encountered in dissolver solution of irradiated fuel.  相似文献   

13.
A method for the determination of uranium in rock samples by emission spectrometry is presented. The rock is dissolved and the uranium content determined by nebulizing the solution into an inductively coupled-plasma optical excitation source. Various spectral lines were investigated. The uranium emission at 378.28 nm -was chosen because of its relative freedom from matrix element spectral interferences. For this emission, a practical detection limit of 0.1 p.p.m. in solution was achieved by optimizing source parameters (power, flow-rate, observation height). Results are compared with those obtained by a number of other techniques.  相似文献   

14.
Isotope dilution alpha spectrometric /IDAS/ method has been developed for the determination of uranium in geological materials. The spike employed as uranium enriched in the isotope 233. The results of the analysis for rock and ore samples show that the precision and accuracy of the method are comparable to other analytical techniques and the method can be employed for routine analysis.  相似文献   

15.
16.
It is well known that ammunition containing depleted uranium (DU) was used by NATO during the Balkan conflict. To evaluate the DU origin (natural uranium enrichment or spent nuclear fuel reprocessing) it is necessary to check the presence of activation products (236U, 239+240Pu, 241Am, 237Np, etc.) in the ammunition.

Every transuranium element (TRU) was separated from the uranium matrix by extraction chromatography with microporous polyethylene (Icorene) supporting suitable stationary phases. Plutonium was separated by tri-n-octylamine (TNOA). 241Am was separated by TNOA and di(2ethylhexylphosphoric) acid (HDEHP). Neptunium also was separated by tri-n-octylamine using different conditions. After elution, the TRU elements were electroplated and counted by alpha spectrometry. The TRU decontamination factors from uranium were higher than 106.

The final chemical yields ranged from 50 to 70%. The detection limit was 1?Bq?kg?1 for 0.10?g ammunition; 239 + 240Pu and 241Am concentrations in two penetrators were 26 and 70?Bq?kg?1 and <1 and 3.4?Bq?kg?1, respectively; the 237Np concentration in one penetrator was 30.1?Bq?kg?1.

The presence of these anthropogenic radionuclides in the penetrators indicates that at least part of the uranium originated from the reprocessing of nuclear fuel, although because of their very low concentrations, the radiotoxicological effect is negligible.  相似文献   

17.
Certified reference material (CRM) 115, Uranium (Depleted) Metal (Uranium Assay Standard), was analyzed using a TRITON Thermal Ionization Mass Spectrometer to characterize the uranium isotope-amount ratios. The certified 235U/238U “major” isotope-amount ratio of 0.0020337 (12) in CRM 115 was determined using the total evaporation (TE) and the modified total evaporation (MTE) analytical techniques. In the MTE method, the total evaporation process is interrupted on a regular basis to allow correction of background from peak tailing, internal calibration of the secondary electron multiplier detector versus the Faraday cups, peak-centering, and ion source re-focusing. For the “minor” 234U/238U and 236U/238U isotope-amount ratio measurements using MTE, precision and accuracy comparable to conventional analyses are achieved, without compromising the quality of the 235U/238U isotope-amount ratios. Characterized values of the 234U/238U and 236U/238U isotope-amount ratios in CRM 115 are 0.000007545 (10) and 0.000032213 (84), respectively. The 233U/238U isotope-amount ratio in CRM 115 is estimated to be <5 × 10?9. The homogeneity of the CRM 115 materials is established through the absence of any statistically significant unit-to-unit variation in the uranium isotope-amount ratios. The measurements leading to the certification of uranium isotope-amount ratios are discussed.  相似文献   

18.
In order to establish baseline information for current and future mining operations, water samples from the Colorado River and its tributaries have been analyzed for Ra-226 and uranium isotopes. Ra-226 was separated by coprecipitation on BaSO4 followed by alpha spectrometry. Ba-133 was used as a tracer for yield determination. Uranium was separated by a combination of BaSO4 precipitation and solvent extraction followed by coprecipitation on CeF3 for alpha spectrometry.Results indicate that radium and uranium levels in the Colorado River and its tributaries, except the Little Colorado River, are below the EPA specifications [1] for drinking water of 185 mBq/liter (5 pCi/1) for Ra-226 and 433 mBq/liter (11.7 pCi/1) for U-238. However, the specific sources for elevated uranium and Ra-226 concentrations in the Little Colorado River should be identified, and the potential impacts from leaching of the naturally exposed mineralization inside the Grand Canyon should be investigated.  相似文献   

19.
The evaluation of the source term in facilities related to the first stages of nuclear fuel involves the determination of radium concentration, as well as those from other radionuclides members of the uranium series. These activities are often required within a short time period, making impossible the use of radiochemical methods or the gamma-ray spectrometry of radium daughters. In those situations it can be very convenient to determine the226Ra activity by means of its 186 keV gamma-ray line. For this purpose it is necessary to estimate the interference due to235U, also present in natural samples. This method has been applied successfully to several soil samples from an old uranium factory in Southern Spain.  相似文献   

20.
An absolute method for the determination of isotopic composition of substances in multiple collector mass spectrometers was proposed. The detailed analysi of terms used in the method for the determination of the isotopic composition of uranium hexafluoride was given. Parabolic nature of occurring constant measurement error, obtained in theory, was proved by test data for 235U within a wide range of its concentrations. In order to use the method of measurements in practice, the registration of constant error, through linear discriminatory relations Δc i (c i ), preliminary determined using uranium hexafluoride with standard isotopic composition, was proposed. The advantages of the developed method in comparison with the traditional analysis procedures, applied at present, were considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号