首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grafting of [W(2)(NMe(2))(6)] onto dehydroxylated silica affords the well-defined surface species [([triple bond, length as m-dash]Si-O)W(2)(NMe(2))(5)], characterized by elemental analysis, and infrared, Raman and NMR spectroscopies, and the catalytic reactivity of this supported tungsten(III) d(3)-d(3) dimer and of its alkoxide derivatives towards alkynes has been probed.  相似文献   

2.
3.
The isolation and characterization of monomeric Fe(III) amido complexes with hybrid ureate/amidate ligands is described. An aryl azide serves as the source of the amido ligand in preparing the complexes from trigonal monopyramidal Fe(II) precursors. Aryl azides more commonly react with transition metal complexes by a two-electron oxidation process to yield imido complexes, suggesting that the Fe(III) amido complexes may be formed from high valent species by hydrogen atom abstraction from an external species. The mechanistic basis for formation of the amido complexes is investigated using substrates that readily donate hydrogen atoms. Results from these experiments suggest that the Fe(III) amido complexes are generated from Fe(IV) imido intermediates that can facilitate homolytic X-H bond cleavage. The Fe(III) amido complexes are high spin (S = 5/2) with a strong absorbance band at lambdamax approximately 600 nm and extinction coefficients between 2000 and 3000 M-1 cm-1. These complexes are hygroscopic, reacting with 1 equiv of water to produce the corresponding Fe(III)-OH complexes and p-toluidine.  相似文献   

4.
The title compound, [Ta(C3H7N)(C3H8N)Cl2(C3H9N)2], is the first monomeric example of a metal complex that features imido, amido and amino moieties in the same mol­ecule. The Ta atom has distorted octahedral coordination, with the imido moiety trans to chlorine and the pseudo‐axial ligands bent away from the imido moiety. Principal dimensions include Ta=N = 1.763 (8) Å, Ta—N(H) = 1.964 (7) Å, and Ta—N(H2) = 2.247 (7) and 2.262 (7) Å.  相似文献   

5.
The coordination chemistry of the hydrazine derivatives dimethylhydrazine (Hdmh) and N-trimethylsilyl-N'N'-dimethylhydrazine (Htdmh) at Ta, Zr and Hf was investigated aiming at volatile mixed ligand all-nitrogen coordinated compounds. The hydrazido ligands were introduced either by salt metathesis employing the Li salts of the hydrazines and the tetrachlorides MCl(4) (M = Zr, Hf) or by amine substitution using M(NR(2))(4) (R = Me, Et) and [(t-BuN)Ta(NR(2))(3)]. The new complexes were fully characterised including (1)H/(13)C NMR, mass spectrometry and a study of their thermal behaviour. The crystal structures of [ZrCl(tdmh)(3)] and the all-nitrogen coordinated complex [Ta(N-t-Bu)(NMe(2))(2)(tdmh)] are discussed as well as the structure of the by-product [Li(tdmh)(py)](2). Preliminary MOCVD experiments of the liquid compound [Ta(NEt(2))(2)(N-t-Bu)(tdmh)] were performed and the deposited TaN(Si) films were analysed by RBS and SEM.  相似文献   

6.
7.
8.
Summary The catalytic activity of homogeneous and silica-supported rhodium(I) complexes has been investigated for the reaction of tertiary silanols with a series of mono-, di- and triorganosubstituted hydridosilanes. The reaction is very sensitive to the electronic effects of substituents attached to silicon in the hydridosilane. The nature of the catalyst ligands and the structure of organosilanols seem to have little effect on the reaction rate. A mechanism involving rapid activation of the organosilicon hydride in the oxidative addition step followed by nucleophilic attack of the silanol on silicon complexed to rhodium is proposed. The system investigated has also been found to efficiently catalyse the reaction of oligomeric ,(1)-dihydriclopolyeiimethylsiloxane with polydimethylsiloxane-,(1)-diols giving cyclic compounds. Silica-supported complexes showed lower activity than their homogeneous counterparts.  相似文献   

9.
(Salen)manganese(V) nitrido species are activated by electrophiles such as trifluoroacetic anhydride (TFAA) or trifluoroacetic acid (TFA) to produce N2. Mechanistic studies suggest that the manganese(V) nitrido species first react with TFAA or TFA to produce an imido species, which then undergoes N...N coupling. It is proposed that the resulting manganese(III) mu-diazene species decomposes via internal redox to give N2 and manganese(II). The manganese(II) species is then rapidly oxidized by manganese(V) imide to give manganese(III) and CF3CONH2 (for TFAA) or NH3 (for TFA).  相似文献   

10.
New water-soluble bimetallic peroxo-tartrato complexes of niobium(V) and/or tantalum(V) have been prepared, characterized from the structural and spectroscopic point of view, and used as molecular precursors for Nb-Ta mixed oxides. Two new homometallic complexes, (gu)5[Nb2(O2)4(tart)(Htart)] x 4H2O (1a) and (gu)6[Ta2(O2)4(tart)2] x 4H2O (2a), and the corresponding heterometallic complex, (gu)5[NbTa(O2)4(tart)(Htart)] x 4H2O (3), have been obtained. The crystal structures of the homometallic compounds, (gu)5[Nb2(O2)4(tart)(Htart)] x 6H2O x 1H2O2 (1b) and (gu)6[Ta2(O2)4(tart)2] x 6H2O (2b), have been determined, showing, for both cases, two 8-fold-coordinated metal atoms, each surrounded by oxygen atoms belonging to two bidentate peroxides, two monodentate carboxylato, and two alkoxo groups from both bridging tartrato ligands. The coordination polyhedron around each metal atom is a dodecahedron. The thermal treatment of complexes 1a, 2a, and 3 in air at 700 or 800 degrees C, depending of the Ta content, provided Nb2O5, Ta2O5, and the solid solution TaNbO5, respectively. The thermal treatment of a 1:1 Nb/Ta molar ratio mixture of 1a and 2a has also been studied. BET and SEM measurements have been carried out and reveal these oxides possess relatively high specific surface areas and display a porous character. Comparison between the use of homo- and heterometallic precursors is discussed.  相似文献   

11.
The bis(imido) complexes (BDI)Nb(NtBu)2 and (BDI)Nb(NtBu)(NAr) (BDI = N,N′-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate; Ar = 2,6-diisopropylphenyl) were shown to engage in 1,2-addition and [2 + 2] cycloaddition reactions with a wide variety of substrates. Reaction of the bis(imido) complexes with dihydrogen, silanes, and boranes yielded hydrido-amido-imido complexes via 1,2-addition across Nb-imido π-bonds; some of these complexes were shown to further react via insertion of carbon dioxide to give formate-amido-imido products. Similarly, reaction of (BDI)Nb(NtBu)2 with tert-butylacetylene yielded an acetylide-amido-imido complex. In contrast to these results, many related mono(imido) Nb BDI complexes do not exhibit 1,2-addition reactivity, suggesting that π-loading plays an important role in activating the Nb–N π-bonds toward addition. The same bis(imido) complexes were also shown to engage in [2 + 2] cycloaddition reactions with oxygen- and sulfur-containing heteroallenes to give carbamate- and thiocarbamate-imido complexes: some of these complexes readily dimerized to give bis-μ-sulfido, bis-μ-iminodicarboxylate, and bis-μ-carbonate complexes. The mononuclear carbamate imido complex (BDI)Nb(NAr)(N(tBu)CO2) (12) could be induced to eject tert-butylisocyanate to generate a four-coordinate terminal oxo imido intermediate, which could be trapped as the five-coordinate pyridine or DMAP adduct. The DMAP adducted oxo imido complex (BDI)NbO(NAr)(DMAP) (16) was shown to engage in 1,2-addition of silanes across the Nb-oxo π-bond; this represents a new reaction pathway in group 5 chemistry.

Another slice of pi: the addition of a second π-donor ligand engenders 1,2-addition and [2 + 2] cycloaddition reactivity across Nb-imido and Nb-oxo bonds.  相似文献   

12.
Infrared spectra of ammonia adsorbed on CoO, NiO, SiO2, CaO, MgO, ZrO2, ZnO, TiO2, BeO and Al2O3, have been studied in the NH stretching and bending vibration regions at various stages of sample dehydroxylation. Several types of adsorption were found: hydrogen bonding to surface oxygen atoms or hydroxyl groups, coordination to Lewis acid sites and coordination plus hydrogen bonding; on some oxides ammonia molecules dissociate to produce surface NH2 and OH groups. Frequencies characteristic of the distinct adsorbed species were determined. Except for Al2O3, no evidence was found for Brönsted acid sites on the surface of the above oxides.  相似文献   

13.
Treatment of a dinuclear Ru(II) amido complex [Cp*Ru(mu2-NHPh)]2 (Cp* = eta5-C5Me5) with small organic substrates including CO, tert-butyl isocyanide, a sulfur ylide Ph2S=CH2, and diphenylacetylene resulted in an unexpected disproportionation reaction of the bridging amido ligands to produce a free amine and a series of imido-bridged diruthenium complexes [(Cp*Ru)2(mu2-L)(mu2-NPh)] (L = CO, t-BuNC, CH2). In the case of diphenylacetylene, the bridging imido ligand underwent subsequent coupling reaction with the coordinated alkyne to form an iminoalkenyl complex [(Cp*Ru)2(mu2-PhNCPhCPh)].  相似文献   

14.
Noh W  Girolami GS 《Inorganic chemistry》2008,47(22):10682-10691
The new tantalum(II) complex (eta (6)-C 7H 8)TaCl 2(PMe 3) 2 ( 1) was synthesized by the reduction of TaCl 5 with n-butyllithium in the presence of PMe 3 and cycloheptatriene. Compound 1 adopts a four-legged piano stool structure in which the tantalum center is bound to a eta (6)-cycloheptatriene ring in addition to two chlorides and two phosphine ligands in a transoid arrangement. Treatment of 1 with methyllithium results in a loss of the equivalents of HCl and formation of the eta (7)-cycloheptatrienyl complex (eta (7)-C 7H 7)TaCl(PMe 3) 2 ( 2), whereas treatment of 1 with sodium or sodium borohydride affords small amounts of the eta (5)-cycloheptadienyl complex (eta (5)-C 7H 9)TaCl 2(PMe 3) 2 ( 3). Compound 2 adopts a three-legged piano stool structure; the eta (7)-C 7H 7 ring is fully aromatic and planar. The molecular structure of 3 is similar to that of 1, except for the eta (5) binding mode of the seven-membered ring. Treatment of the previously described sandwich compound (C 5Me 5)Ta(C 7H 7) with allyl bromide affords the tantalum(V) product (C 5Me 5)Ta(C 7H 7)Br ( 4), which reacts with LiAlH 4 to give the tantalum(V) hydride (C 5Me 5)Ta(C 7H 7)H ( 5). Compound 4 also reacts with alkylating agents to generate the methyl, allyl, and cyclopropyl complexes (C 5Me 5)Ta(C 7H 7)Me ( 6), (C 5Me 5)Ta(C 7H 7)(eta (1)-CH 2CHCH 2) ( 7), and (C 5Me 5)Ta(C 7H 7)(c-C 3H 5) ( 8). Compounds 4- 8 all adopt bent sandwich structures in which the dihedral angle between the two carbocyclic rings is 34.9 degrees for the bromo compound 4, 26.6 degrees for the hydride 5, 33.1 degrees for the methyl compound 6, 34.2 degrees for the allyl compound 7, and 37.5 degrees for the cyclopropyl compound 8. (1)H and (13)C NMR data are reported for the diamagnetic compounds.  相似文献   

15.
Hydrogenation and protonation of parent imido complexes have attracted much attention in relation to industrial and biological nitrogen fixation. The present study reports the structure and properties of the highly unsaturated diiridium parent imido complex [(Cp*Ir)(2)(μ(2)-H)(μ(2)-NH)](+) derived from deprotonation of a parent amido complex. Because of the Lewis acid-Br?nsted base bifunctional nature of the metal-NH bond, the parent imido complex promotes heterolysis of H(2) and deprotonative N-H cleavage of ammonia to afford the corresponding parent amido complexes under mild conditions.  相似文献   

16.
The heteroatom-substituted imido complexes [(LAu)3(mu-NX)]+ (X = NR2, R = Ph, Me, Bz; X = OH, Cl; L = a phosphine) have been prepared from the reactions of NH2X with [(LAu)3(mu-O)]+. Thermally unstable [(LAu)3(mu-NNMe2)]+ (L = P(p-XC6H4)3, X = H, F, Me, Cl, MeO) decompose to the gold cluster [LAu]6(2+) and tetramethyltetrazene Me2NN=NNMe2. The decomposition is first-order overall with a rate constant that increases with increasing pKa of the phosphine ligand. Activation parameters for the decomposition are deltaH(not equal to) = 99(4) kJ/mol and deltaS(not equal to) = 18.5(5) J/K.mol for L = PPh3 and deltaH(not equal to) = 78(3) kJ/mol and deltaS(not equal to) = -47(2) J/K.mol for L = P(p-MeOC6H4)3. The decomposition of analogous [(LAu)3(mu-NNBz2)]+ produces bibenzyl, indicative of the release of free amino nitrene Bz2NN.  相似文献   

17.
Hyperbranched poly(amido amine)s (HPAA) show weak photoluminescence, however, they have shown strong emission after short polyethylene glycol (PEG) chains have been linked onto HPAA macromolecule via Michael addition reaction. These PEGylated hyperbranched poly(amido amine)s show low cytotoxicity and potential application in cell imaging.  相似文献   

18.
The imido complex (dtbpe)Ni(N(2,6-(CHMe2)2C6H3)) reacts with CO and CNCH2Ph with addition at the Ni-N bond to give (dtbpe)Ni(C,N:eta 2-C(O)N(2,6-(CHMe2)2C6H3)) and (dtbpe)Ni(C,N:eta 2-C(NCH2Ph)N(2,6-(CHMe2)2C6H3)); both complexes react further with CO to liberate the isocyanate and carbodiimide ligands with formation of (dtbpe)Ni(CO)2.  相似文献   

19.
We have investigated the growth of hyperbranched polyglycidol films, and their subsequent reaction with a transition metal coordination complex, pentakis(dimethylamido)tantalum, Ta[N(CH 3) 2] 5 using ellipsometry, contact angle measurements, atomic force microscopy and X-ray photoelectron spectroscopy (XPS). Up to thicknesses of approximately 150 A, the growth of polyglycidol is approximately linear with reaction time for growth activated using either sodium methoxide or an organic superbase. The reaction of Ta[N(CH 3) 2] 5 at room temperature with these layers depends strongly on their thickness--the amount of uptake of Ta by the surface increases with the thickness of the organic layer, and thicker films also lead to more extensive ligand exchange reactions (with the R-OH groups), with as many as 4 ligands being lost on the thicker organic films. Ta penetrates the surface of all films examined (thicknesses 30-84 A), but the average depth of the penetration is nearly independent of the thickness of the organic film, and it is approximately 15-25 A. Modification of the polyglycidol with an aminoalkoxysilane introduces a significant fraction of -NH 2 termination in the organic layer. Reactions of this layer with the Ta complex are quite different than those on an unmodified layer--now on average only a single ligand exchange reaction occurs, while on the unmodified surface as many as four ligands are exchanged.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号