首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of diffusion in the oxidative degradation of cis-1,4-polyisoprene vulcanizates was estimated by the analysis of the transient state of diffusion and oxidative degradation. An expression for the number of network chain scissions was obtained by solving the diffusion equation, which takes into account first-order oxygen consumption as well as constant scission efficiency. A practical method was proposed to analyze the transient process, which makes it possible to estimate diffusion coefficient and first-order rate constant independently. It was shown that the same analytical procedure would be applicable to the concentration jump method. The diffusion coefficient thus obtained was somewhat lower than the extrapolated value from the low-temperature data which was obtained in the absence of oxidation. Possible reasons responsible for this discrepancy were discussed.  相似文献   

2.
γ-Initiated oxidations of solid poly(ethylene oxide) (PEO) have been carried out at ambient temperatures and the dependence of the rate of oxygen consumption on rate of initiation, O2 pressure, and crystallinity has been determined. At 25°C, the radiation yield G for O2 absorbed is 117–281, depending on dose rate, and decreases moderately with increasing crystallinity. The principal oxidation products are formate and hemiformal groups, hydroperoxides, and some volatile compounds, mainly formaldehyde and carbon dioxide. The rates of O2 consumption and formation of products and chain scission are little affected by a change of the temperature in the range ?23 to +55°C except for hydroperoxide, the formation of which requires an activation energy of 4 kcal/mole. Experiments with 2,6-di-tert-butyl-p-cresol show that essentially all of the initiating PO2· radicals escape cage termination; G value for formation of the initiating peroxy radicals was estimated from the inhibition period to be 5.0 ± 0.3.  相似文献   

3.
The oxidative degradation of poly(α-methylstyrene) initiated by the photodecomposition of azobisisobutyronitrile was studied at 30°C in benzene solution. The progress of the reaction was followed by measuring the rate of chain scission of the polymer. It has been confirmed by GPC measurements that random scission of the polymer chain occurs in the present system. Chain scission did not occur in the absence of AIBN and oxygen. The rate was proportional to the initiation rate and independent of polymer concentration and oxygen pressure under these experimental conditions. Phenol was an effective inhibitor to this reaction. The mechanism of chain scission during oxidation is discussed, and a six-membered transition is proposed.  相似文献   

4.
Tensile stresses accelerate the rate of oxidation by ozone of films of polyolefins, high-density and low-density polyethylene, and isotactic polypropylene. Experiments have been performed on thin (up to 20 μm) uniaxially oriented films under constant stress σ, under conditions where the chemical kinetics rather than diffusion dominates. It is found that the oxidation rate is proportional to exp(γ′σ/RT) where γ′ is an empirical constant. The effects of unimolecular chain scission and the change of molecular polymer parameters under stress on this dependence are negligible. An analogy with the kinetics of oxidation of stressed cycloparaffins by ozone is noted. A mechanism is suggested to explain the accelerating effect of tensile deformations on chemical processes involving rehybridization of carbon atoms in the main chain from the sp3 to the sp2 state. An ESR study with a stable nitroxyl radical probe revealed a change in the segmental mobility of polymer chains in the course of loading.  相似文献   

5.
The photo-oxidative chain scission of isotactic polystyrene films has been studied as a function of the degree of crystallinity, SO2, and NO2 pressures, and temperature. The rate of chain scission increases in the presence of SO2 with extent of crystallinity. It is assumed to be faster due to strain in and near the folds in the crystalline areas than in the amorphous regions. In the presence of NO2, chain scission increases up to about 8% crystallinity but subsequently becomes constant with further increase in crystallinity. It is suggested that the diffusion rates of oxygen and nitrogen dioxide into the films decrease with increasing crystallinity. These two processes compensate each other.  相似文献   

6.
For a polymer in which permanent rupture of individual molecules is the rate-limiting process for plastic deformation, the kinetics of chain-end diffusion and secondary radical reactions should be compared with the kinetics of caged radical recombination in the calculation of activation parameters for plastic deformation. If mechanisms of cage escape are slower than those for cage recombination, the activation parameters for plastic deformation will differ from those for the initial bond-breaking process. For the case of polyethylene deformed in the vicinity of 250°K, the critical thermally activated event appears to involve scission of the polymer molecule near the site of an abstracted hydrogen atom. For this system the dominant cage-escape mechanism is diffusion, which is faster than either hydrogen abstraction or unzipping to the monomer. However, at low stresses the rate of cage recombination is expected to be higher than the rate of cage escape, so that the activation parameters for deformation should be the sum of those for chain scission and diffusion. The contribution of diffusion (ca. 15 kcal/mole) to the activation energy for deformation (E*, extrapolated to zero stress conditions) is relatively modest. However, the calculated molar activation volume for deformation V* increases by almost an order of magnitude, i.e., from ca. 10 to ca. 76 cm3/mole when diffusion is required. Consideration of experimental values of E* and V* for high molecular weight polyethylene indicates that, in the regime examined, chain scission plus chain-end diffusion is required to effect plastic deformation.  相似文献   

7.
The oxidative and thermo-mechanical degradation of HDPE was studied during processing in an internal mixer under two conditions: totally and partially filled chambers, which provides lower and higher concentrations of oxygen, respectively. Two types of HDPEs, Phillips and Ziegler-Natta, having different levels of terminal vinyl unsaturations were analyzed. Materials were processed at 160, 200, and 240 °C. Standard rheograms using a partially filled chamber showed that the torque is much more unstable in comparison to a totally filled chamber which provides an environment depleted of oxygen. Carbonyl and transvinylene group concentrations increased, whereas vinyl group concentration decreased with temperature and oxygen availability. Average number of chain scission and branching (ns) was calculated from MWD curves and its plotting versus functional groups' concentration showed that chain scission or branching takes place depending upon oxygen content and vinyl groups' consumption. Chain scission and branching distribution function (CSBDF) values showed that longer chains undergo chain scission easier than shorter ones due to their higher probability of entanglements. This yields macroradicals that react with the vinyl terminal unsaturations of other chains producing chain branching. Shorter chains are more mobile, not suffering scission but instead are used for grafting the macroradicals, increasing the molecular weight. Increase in the oxygen concentration, temperature, and vinyl end groups' content facilitates the thermo-mechanical degradation reducing the amount of both, longer chains via chain scission and shorter chains via chain branching, narrowing the polydispersity. Phillips HDPE produces a higher level of chain branching than the Ziegler-Natta's type at the same processing condition.  相似文献   

8.
An apparatus is described for the measurement of oxygen uptake into a polymer sample at constant oxygen pressures in the range 20–1000 mm Hg. Measurements of the rate of oxygen uptake into poly-4-methylpentene-1 show that the rate is accurately first-order in oxygen pressure over the range 50–800 mm pressure for temperatures ranging from 122 to 154°C and film thickness in the range 0.001–0.025 cm. A theoretical treatment of the kinetics of a reaction in which oxygen diffuses into both faces of a thin film, in which it is consumed by a first-order reaction shows that the oxidation rate ρ per unit area of film surface is given by ρ = ρ tanh ßL/2 where ρ is the limiting oxidation rate for a thick film, L is the film thickness, and ß = (k/D)1/2, k being the oxidation rate constant and D the diffusion constant. Values of D and the activation energy for diffusion calculated from autoxidation data are in good agreement with values determined directly.  相似文献   

9.
Photo-oxidative degradation of polystyrene in the form of film 20 μm thick was carried out in air using u.v. light of 254 nm at room temperature and at temperatures up to Tg. GPC was used to study changes of molecular weight distribution during the process. The GPC results were analysed using equations for an initially most probable distribution and non-uniform energy dissipation; the quantum yield values of chain scission and cross-linking of polystyrene during degradation were calculated. Initially, degradation progressed at high rate, connected with consumption of oxygen dissolved in the film. The slower subsequent degradation was connected with consumption of oxygen supplied during the reaction. An appreciable increase in the quantum yields for chain scission and cross-linking was observed just below and at Tg for the initial stage of photo-oxidative degradation. This increase of the quantum yield of photodegradation was caused by increased mobility of oxygen molecules in the film, connected with movement of polymer chain elements.  相似文献   

10.
Chain scission and crosslinking rates have been derived from molecular mass distributions obtained by gel permeation chromatography at different stages during photodegradation of various thermoplastics exposed to ultraviolet irradiation (UV). Results are given for a high density polyethylene (HDPE); a low density polyethylene (LDPE); a linear low density polyethylene (LLDPE); a polypropylene homopolymer (PPHO); and a polypropylene copolymer (PPCO). As the oxidation progressed, it was observed that the scission rate for HDPE, LLDPE, PPHO and PPCO increased near to the exposed surface whereas for LDPE the rate remained almost unchanged. The crosslink rate fell near to the surface with HDPE and LDPE but increased with PPHO and PPCO. The reaction rates near to the bar centre (∼1.5 mm from the exposed surface) were low for HDPE, PPHO and PPCO; this is attributed to oxygen starvation, caused by consumption of oxygen by rapid reaction near the surface. Reaction was observed in the interior with LDPE and LLDPE, presumably because of a combination of a higher oxygen diffusion rate than for HDPE and a lower rate of consumption of oxygen near the surface than with the polypropylenes.  相似文献   

11.
Polyenes formed in the thermal degradation of PVC are readily oxidized in the liquid phase in the presence of a radical initiator. In pure oxygen at a constant rate of initiation, different length polyenes are consumed by a first-order reaction: the rate of consumption is proportional to the polyene length and to the square root of initiator concentration. Applying the relationships given by the theory of chain reactions, we determined the ratio of the rate constant of chain propagation calculated for one double bond k2 to the square root of the chain-termination rate constant k4. The value obtained, which is relatively high in comparison to other unsaturated hydrocarbons, reflects very well the high reactivity of polyenes of the degraded PVC sample towards oxidation. Intramolecular chain propagation steps are also likely to play a role in the oxidation of polyenes.  相似文献   

12.
Reaction products of vacuum and oxidative degradation of poly-p-xylylene have been quantitatively determined by chromatographic analysis as function of time, temperature and oxygen pressure. Respective Arrhenius parameters were also ascertained for some of the reaction products and for the sums of all products. The energies of activation for the sums agree quite satisfactorily with the energies of activation obtained previously by uninterrupted experiments in quartz-spoon reaction vessels. The results found here can be described in terms of mechanisms previously postulated on the basis of the total loss in weight (or volatile production) data. Scission of “weak” links (due to abnormal structures) takes place followed by formation of various products. The whole process is governed by the initial chain scission reaction; however, the energies of activation for each of the products do not need to be identical with that of the chain scission reaction. Each product is formed by a reaction which has its own characteristic number average kinetic chain lengths; the latter have their specific energy of activation values. Oxidative degradation produces the same organic compounds as vacuum degradation and in addition CO, CO2, and H2O. Oxidized intermediate compounds are apparently fairly rapidly decarboxylated and decarbonylated. Oxidative chain scission is appreciably faster than that in vacuum. Almost simultaneous “weak” link and “normal” chain scission are taking place initiating the formation of a number of products.  相似文献   

13.
The understanding of the simultaneous transport and chain‐scission phenomena involved in the hydrolysis of bulk‐degrading polymers requires the experimental separation of chain cleavage and water diffusion. The hydrolytic chain cleavage of poly(rac‐lactide) rac‐(PLA) and poly[(rac‐lactide)‐co‐glycolide] (PLGA) is analysed on the basis of monolayer degradation experiments combined with an improved data reduction procedure. Different, partly contradictory models of the hydrolytic degradation and erosion mechanism of PLA and PLGA, namely random chain scission and chain‐end scission, are discussed in the literature. The instantaneous linear area reduction observed for the polymer Langmuir films indicates a chain‐end scission mechanism. As monolayers of end‐capped and non‐end‐capped polymers degrade with exactly the same rate, the observed differences in the degradation kinetics of bulk samples do clearly result from differences in the water penetration into these polymers. A pronounced ‘auto‐inhibition’ effect is observed for the polymers degraded at initially high pH of the aqueous subphase in the absence of buffers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

The oxidative photolysis of polyvinylpyrrolidone with light of λ = 2537 Å has been studied over a range of oxygen pressures and polymer concentrations. The results show that chain scission and cross linking take place simultaneously. In the range where cross linking is a negligible component, a mechanism based on chain scission due to components which lead to chain scission without intervention of oxygen, and a component which leads to chain scission via hydroperoxide side groups, has been proposed. This mechanism accounts satisfactorily for all observed features of the reaction. The degree of degradation at any one time decreases with oxygen pressure. Cupric ions, with or without oxygen present, have very little influence on the degradation process. However, the UV spectra of PVP in the presence of cupric ions are different from those without them.  相似文献   

15.
A simple method to determine the chain scission mechanism of the oxidative degradation of rubber vulcanizates is proposed. The method involves the measurement of oxidative stress decay and the change in sol fraction, which allow us to distinguish whether scission occurs randomly along the main chain, near crosslinks or of crosslinks. The applicability of this method was well established using natural rubber vulcanizates as the reference samples. The chain scission of cis-1,4-polyisoprene vulcanizaties was proved to take place randomly along the main chain irrespective of their crosslink structure. On the other hand, the chain scission of dicumyl peroxide cured cis-1,4-polybutadiene takes place selectively near crosslinks. It is suggested that the unusual behavior of cis-1,4-polybutadiene vulcanizates is due to the characteristic structure of the crosslinks.  相似文献   

16.
In recent years much evidence has been accumulated to implicate electronically excited oxygen (1Δg) molecules as the agent responsible in photosensitized oxidations for the formation of allylic hydroperoxides from olefins and of endoperoxides from 1,3-dienes. Little regarding the mechanistic aspects of the photo-oxidative degradation of polybutadiene (PBD) is known, however. To determine if electronically excited oxygen (1Δg) molecules can oxidize PBD, the ABS polyblend and standard samples of PBD's containing high trans, high cis, and high vinyl content were treated in homogeneous solution at low temperature with chemically produced singlet oxygen in situ. The source of the singlet oxygen was the triphenylphosphite-ozone adduct. Studies by spectroscopy, elemental analysis, viscosity determinations, and gel measurements showed only the cis- and the trans-PBD were susceptible to oxidation; no chain scission was involved in the attack of cis- and trans-PBD by singlet oxygen; the oxidation of the cis PBD involved the initial formation of hydroperoxides which on thermal decomposition yielded gel. The trans-PBD was found to oxidize but apparently by a mechanism different from that of cis-PBD. Initial singlet oxygen attack of ABS proceeds by oxidation of the PBD portion of the polyblend. It was also observed that when only a small amount of the double bonds in the cis-PBD polymer had been oxidized to hydroperoxides, subsequent thermal treatment of this sample resulted in gross structural changes in the whole polymer.  相似文献   

17.
The long-wave (λ < 3000 Å) photo-oxidation of polystyrene in solution at 25°C has been studied osmometrically. Two types of chain scission have been observed: a purely photo process which occurs completely independently of oxygen and which is attributed to fission of photolabile groups in the polymer, and another process associated with random photolyses of the products of oxidation Scavenger experiments with 131I2 have shown that approximately two iodine atoms are incorporated per chain scission when photolysis is carried out in solution (benzene, hexafluorobenzene, methylene chloride) under high vacuum conditions in the presence of 131I2. No iodine incorporation or chain scission occurs when ionically prepared polystyrenes are treated similarly. The nature of the photolabile bond has been discussed, and there is some evidence for a peroxidic linkage arising from oxygen copolymerization in the chains. It is suggested that fission of the photolabile groups contributes to the initiation of the long-wave photooxidation of the polymer.  相似文献   

18.
Poly-(4,4′-isopropylidene diphenylene sebacate) (PIDPS), a condensation product of bisphenol-A and sebacic acid, was irradiated with 60Co γ rays. Viscosity, end-group analysis, and IR spectral measurement techniques were used to study the chemical changes occurring during γ radiolysis. It is observed that PIDPS undergoes random chain scission owing to weak links which may be present or be incorporated by the oxygen from air. The G value of random chain scission is estimated to be 9, whereas the enthalpy of fusion is found to be 6.2 kcal/mol repeat unit of PIDPS.  相似文献   

19.
The radiochemical degradation of a polyoxymethylene homopolymer (POM) was used to study the effects of molar mass changes in the crystalline structure. The dose rate was 20 kGy h−1 with doses of up to 30 kGy used. Both WAXS and SAXS were used to analyse the structures. Results showed that, under irradiation, the polymer undergoes random chain scission. The radiochemical yield was found to be G = 1.6 chain scission events per 100 eV. It was found that no crosslinking occurs and that only one chain scission mechanism, leading to the formation of formate groups, operates. Proof for the existence of chemi-crystallization is evidenced by (i) an increase in the crystallinity ratio as well as (ii) a decrease in the amorphous layer thickness. Simple models, derived from Rault’s theory, are used to predict both (i) and (ii) from molar mass values.  相似文献   

20.
Poly-p-xylylene prepared by pyrolysis of di-p-xylylene has been degraded under vacuum and in the presence of oxygen as a function of temperature and oxygen pressure. The vacuum pyrolysis is mainly due to “abnormal” structures. Volatiles are initially produced quite slowly, but the reaction accelerates subsequently. Arrhenius equations were derived for various ranges of volatile formation. A mechanism has been formulated consisting of random chain scission followed by depropagation (dimers to pentamers); simulatanously another zip reaction produces hydrogen. The thermal, oxidative degradation has been studied above and below the softening point of the polymer as a function of oxygen pressure. A first-order reaction of volatile formation due to “abnormal” chain scission is followed by normal chain scission, which is also first order. The postulated mechanism leads initially to hydroperoxide formation. Arrhenius equations for volatile formation are different below and above the softening point. Oxygen consumption also follows a first-order reaction with an energy of activation of 31.5 kcal/mole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号