首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Du J  Perera R  Dawson JH 《Inorganic chemistry》2011,50(4):1242-1249
His93Gly sperm whale myoglobin (H93G Mb) has the proximal histidine ligand removed to create a cavity for exogenous ligand binding, providing a remarkably versatile template for the preparation of model heme complexes. The investigation of model heme adducts is an important way to probe the relationship between coordination structure and catalytic function in heme enzymes. In this study, we have successfully generated and spectroscopically characterized the H93G Mb cavity mutant ligated with less common alkylamine ligands (models for Lys or the amine group of N-terminal amino acids) in numerous heme iron states. All complexes have been characterized by electronic absorption and magnetic circular dichroism spectroscopy in comparison with data for parallel imidazole-ligated H93G heme iron moieties. This is the first systematic spectral study of models for alkylamine- or terminal amine-ligated heme centers in proteins. High-spin mono- and low-spin bis-amine-ligated ferrous and ferric H93G Mb adducts have been prepared together with mixed-ligand ferric heme complexes with alkylamine trans to nitrite or imidazole as heme coordination models for cytochrome c nitrite reductase or cytochrome f, respectively. Six-coordinate ferrous H93G Mb derivatives with CO, NO, and O(2) trans to the alkylamine have also been successfully formed, the latter for the first time. Finally, a novel high-valent ferryl species has been generated. The data in this study represent the first thorough investigation of the spectroscopic properties of alkylamine-ligated heme iron systems as models for naturally occurring heme proteins ligated by Lys or terminal amines.  相似文献   

2.
One of the difficulties in preparing accurate ambient-temperature model complexes for heme proteins, particularly in the ferric state, has been the generation of mixed-ligand adducts: complexes with different ligands on either side of the heme. The difference in the accessibility of the two sides of the heme in the H93G cavity mutant of myoglobin (Mb) provides a potential general solution to this problem. To demonstrate the versatility of H93G Mb for the preparation of heme protein models, numerous mixed-ligand adducts of ferrous, ferric, and ferryl imidazole-ligated H93G (H93G(Im) Mb) have been prepared. The complexes have been characterized by electronic absorption and magnetic circular dichroism (MCD) spectroscopy in comparison to analogous derivatives of wild type Mb. The starting ferric H93G(Im) Mb state spectroscopically resembles wild-type ferric Mb as expected for a complex containing a single imidazole in the proximal cavity and water bound on the distal side. Addition of a sixth ligand to ferric H93G(Im) Mb, whether charge neutral (imidazole) or anionic (cyanide and azide), results in formation of six-coordinate low-spin complexes with MCD characteristics similar to those of parallel derivatives of wild-type ferric Mb. Reduction of ferric H93G(Im) Mb and subsequent exposure to either CO, NO, or O2 produces ferrous complexes (deoxy, CO, NO, and O2) that consistently exhibit MCD spectra similar to the analogous ferrous species of wild-type ferrous Mb. Most interestingly, reaction of ferric H93G(Im) Mb with H2O2 results in the formation of a stable high-valent oxoferryl complex with MCD characteristics that are essentially identical to those of oxoferryl wild-type Mb. The generation of such a wide array of mixed-ligand heme complexes demonstrates the efficacy of the H93G Mb cavity mutant as a template for the preparation of heme protein model complexes.  相似文献   

3.
Heme coordination state determines the functional diversity of heme proteins. Using myoglobin as a model protein, we designed a distal hydrogen-bonding network by introducing both distal glutamic acid (Glu29) and histidine (His43) residues and regulated the heme into a bis-His coordination state with native ligands His64 and His93. This resembles the heme site in natural bis-His coordinated heme proteins such as cytoglobin and neuroglobin. A single mutation of L29E or F43H was found to form a distinct hydrogen-bonding network involving distal water molecules, instead of the bis-His heme coordination, which highlights the importance of the combination of multiple hydrogen-bonding interactions to regulate the heme coordination state. Kinetic studies further revealed that direct coordination of distal His64 to the heme iron negatively regulates fluoride binding and hydrogen peroxide activation by competing with the exogenous ligands. The new approach developed in this study can be generally applicable for fine-tuning the structure and function of heme proteins.  相似文献   

4.
His64 and His93 are the two well-known sites of heme binding in water-dissolved holo-myoglobin, with His93 being a proximal, strongly binding partner, while the distal His64 weakly coordinates to the heme through a small-molecule ligand, e.g., water or O2. The heme bonding scheme in a water-free environment is as yet unclear. Here we employed electron transfer dissociation tandem mass spectrometry to study the preferential attachment site of the ferri-heme (Fe3+) in electrospray-produced 12+, 14+, and 16+ holo-myoglobin ions. Contrary to expectations, in lower-charge complexes that should have a structure resembling that in solution, the heme seems to be preferentially attached to the “distal” histidine. In contrast, in the highest studied charge state, the “proximal” histidine is the site of preferential attachment; the 14+ charge state is an intermediate case. This surprising finding raises a question of heme coordination in proteins transferred to water-free environment, as well as the effect of the protonation sites on heme bonding.  相似文献   

5.
The distal hydrogen bond (H‐bond) in dioxygen‐binding proteins is crucial for the discrimination of O2 with respect to CO or NO. We report the preparation and characterization of a series of ZnII porphyrins, with one of three meso‐phenyl rings bearing both an alkyl‐tethered proximal imidazole ligand and a heterocyclic distal H‐bond donor connected by a rigid acetylene spacer. Previously, we had validated the corresponding CoII complexes as synthetic model systems for dioxygen‐binding heme proteins and demonstrated the structural requirements for proper distal H‐bonding to CoII‐bound dioxygen. Here, we systematically vary the H‐bond donor ability of the distal heterocycles, as predicted based on pKa values. The H‐bond in the dioxygen adducts of the CoII porphyrins was directly measured by Q‐band Davies‐ENDOR spectroscopy. It was shown that the strength of the hyperfine coupling between the dioxygen radical and the distal H‐atom increases with enhanced acidity of the H‐bond donor.  相似文献   

6.
Human serum albumin (HSA) is the most abundant plasma protein in our bloodstream and serves as a transporter for small hydrophobic molecules such as fatty acids, bilirubin, and steroids. Hemin dissociated from methemoglobin is also bound within a narrow D-shaped cavity in subdomain IB of HSA. In terms of the general hydrophobicity of the alpha-helical pocket, HSA potentially has features similar to the heme-binding site of myoglobin (Mb) or hemoglobin (Hb). However, the reduced ferrous HSA-heme complex is immediately oxidized by O2, because HSA lacks the proximal histidine that enables the heme group to bind O2. In this paper, we report the introduction of a proximal histidine into the subdomain IB of HSA by site-directed mutagenesis to construct a tailor-made heme pocket (I142H/Y161L), which allows a reversible O2 binding to the prosthetic heme group. Laser flash photolysis experiments revealed that this artificial hemoprotein appears to have two different geometries of the axial-imidazole coordination, and these two species (I and II) showed rather low O2 binding affinities (P1/2O2 = 18 and 134 Torr) relative to those of Mb and Hb.  相似文献   

7.
Thiolate and selenolate complexes of CYP101 (P450cam) and the H25A proximal cavity mutant of heme-bound human heme oxygenase-1 (hHO-1) have been examined by UV-vis spectroscopy. Both thiolate and selenolate ligands bound to the heme distal side in CYP101 and gave rise to characteristic hyperporphyrin spectra. Thiolate ligands also bound to the proximal side of the heme in the cavity created by the H25A mutation in hHO-1, giving a Soret absorption similar to that of the H25C hHO-1 mutant. Selenolate ligands also bound to this cavity mutant under anaerobic conditions but reduced the heme iron to the ferrous state, as shown by the formation of a ferrous CO complex. Under aerobic conditions, the selenolate ligand but not the thiolate ligand was rapidly oxidized. These results indicate that selenocysteine-coordinated heme proteins will not be stable species in the absence of a redox potential stabilizing effect.  相似文献   

8.
By retaining the native distal His64 in sperm whale myoglobin(Mb),a second distal histidine was engineered in Mb by mutating Leu29 to His29.The resultant mutant of L29H Mb exhibits an unusual enhanced peroxidase activity with a positive cooperativity in comparison to that of wild type Mb.The new enzyme with two cooperative distal histidines has not been found in native peroxidase, which emphasizes a creation of the rational protein design.  相似文献   

9.
构建了鼠脑红蛋白(Mouse neuroglobin)的突变体F106L, 以探求近端残基对脑红蛋白血红素口袋结构的贡献. 通过溶液核磁共振方法研究了外来配体氰根离子与NgbF106L蛋白的结合作用, 结果显示, 此结合存在动力学过程, 并且NgbF106LCN 突变蛋白氰根络合物可以可逆地释放氰根离子, 并使原来的第6配体His64(E7)又结合回到血红素铁上. 研究结果揭示, G5(Phe106)残基对脑红蛋白血红素构象而言较为保守; QM/MM结构优化结果表明, 位于G5 和FG5的近端残基对蛋白结构稳定性具有重要作用, 并可调控外来配体与蛋白作用的配位平衡与热动力学性质.  相似文献   

10.
The functional higher oxidation states of heme peroxidases have been proposed to be stabilized by the significant imidazolate character of the proximal His. This is induced by a "push-pull" combination effect produced by the proximal Asp that abstracts ("pulls") the axial His ring N(delta)H, along with the distal protonated His that contributes ("pushes") a strong hydrogen bond to the distal ligand. The molecular and electronic structure of the distal His mutant of cyanide-inhibited horseradish peroxidase, H42A-HRPCN, has been investigated by NMR. This complex is a valid model for the active site hydrogen-bonding network of HRP compound II. The (1)H and (15)N NMR spectral parameters characterize the relative roles of the distal His42 and proximal Asp247 in imparting imidazolate character to the axial His. 1D/2D spectra reveal a heme pocket molecular structure that is highly conserved in the mutant, except for residues in the immediate proximity of the mutation. This conserved structure, together with the observed dipolar shifts of numerous active site residue protons, allowed a quantitative determination of the orientation and anisotropies of the paramagnetic susceptibility tensor, both of which are only minimally perturbed relative to wild-type HRPCN. The quantitated dipolar shifts allowed the factoring of the hyperfine shifts to reveal that the significant changes in hyperfine shifts for the axial His and ligated (15)N-cyanide result primarily from changes in contact shifts that reflect an approximately one-third reduction in the axial His imidazolate character upon abolishing the distal hydrogen-bond to the ligated cyanide. Significant changes in side chain orientation were found for the distal Arg38, whose terminus reorients to partially fill the void left by the substituted His42 side chain. It is concluded that 1D/2D NMR can quantitate both molecular and electronic structural changes in cyanide-inhibited heme peroxidase and that, while both residues contribute, the proximal Asp247 is more important than the distal His42 in imparting imidazole character to the axial His 170.  相似文献   

11.
The rebinding kinetics of CO to protoheme (FePPIX) in the presence and absence of a proximal imidazole ligand reveals the magnitude of the rebinding barrier associated with proximal histidine ligation. The ligation states of the heme under different solvent conditions are also investigated using both equilibrium and transient spectroscopy. In the absence of imidazole, a weak ligand (probably water) is bound on the proximal side of the FePPIX-CO adduct. When the heme is encapsulated in micelles of cetyltrimethylammonium bromide (CTAB), photolysis of FePPIX-CO induces a complicated set of proximal ligation changes. In contrast, the use of glycerol-water solutions leads to a simple two-state geminate kinetic response with rapid (10-100 ps) CO recombination and a geminate amplitude that can be controlled by adjusting the solvent viscosity. By comparing the rate of CO rebinding to protoheme in glycerol solution with and without a bound proximal imidazole ligand, we find the enthalpic contribution to the proximal rebinding barrier, H(p), to be 11 +/- 2 kJ/mol. Further comparison of the CO rebinding rate of the imidazole bound protoheme with the analogous rate in myoglobin (Mb) leads to a determination of the difference in their distal free energy barriers: DeltaG(D) approximately 12 +/- 1 kJ/mol. Estimates of the entropic contributions, due to the ligand accessible volumes in the distal pocket and the xenon-4 cavity of myoglobin ( approximately 3 kJ/mol), then lead to a distal pocket enthalpic barrier of H(D) approximately 9 +/- 2 kJ/mol. These results agree well with the predictions of a simple model and with previous independent room-temperature measurements of the enthalpic MbCO rebinding barrier (18 +/- 2 kJ/mol).  相似文献   

12.
The rebinding kinetics of NO to the heme iron of myoglobin (Mb) is investigated as a function of temperature. Below 200 K, the transition-state enthalpy barrier associated with the fastest (approximately 10 ps) recombination phase is found to be zero and a slower geminate phase (approximately 200 ps) reveals a small enthalpic barrier (approximately 3 +/- 1 kJ/mol). Both of the kinetic rates slow slightly in the myoglobin (Mb) samples above 200 K, suggesting that a small amount of protein relaxation takes place above the solvent glass transition. When the temperature dependence of the NO recombination in Mb is studied under conditions where the distal pocket is mutated (e.g., V68W), the rebinding kinetics lack the slow phase. This is consistent with a mechanism where the slower (approximately 200 ps) kinetic phase involves transitions of the NO ligand into the distal heme pocket from a more distant site (e.g., in or near the Xe4 cavity). Comparison of the temperature-dependent NO rebinding kinetics of native Mb with that of the bare heme (PPIX) in glycerol reveals that the fast (enthalpically barrierless) NO rebinding process observed below 200 K is independent of the presence or absence of the proximal histidine ligand. In contrast, the slowing of the kinetic rates above 200 K in MbNO disappears in the absence of the protein. Generally, the data indicate that, in contrast to CO, the NO ligand binds to the heme iron through a "harpoon" mechanism where the heme iron out-of-plane conformation presents a negligible enthalpic barrier to NO rebinding. These observations strongly support a previous analysis (Srajer et al. J. Am. Chem. Soc. 1988, 110, 6656-6670) that primarily attributes the low-temperature stretched exponential rebinding of MbCO to a quenched distribution of heme geometries. A simple model, consistent with this prior analysis, is presented that explains a variety of MbNO rebinding experiments, including the dependence of the kinetic amplitudes on the pump photon energy.  相似文献   

13.
Ligand migration and binding in heme proteins have been measured by X-ray diffraction and time-resolved spectroscopy of photoproduct intermediates. In myoglobin (Mb), internal cavities serve as docking sites for carbon monoxide (CO) ligands. In these sites, the CO ligands display characteristic infrared (IR) stretching bands due to interactions with the local electrical field. In the primary docking site, a CO can reside in two opposite orientations, characterized by a doublet of infrared bands, B1 at approximately 2130 and B2 at approximately 2120 cm-1. To assign these bands to the specific orientations, we have reexamined the effects of mutating His64 and Val68 on the infrared stretching bands associated with the B1 and B2 photoproduct states. Wild-type, H64L, V68F, and H64L-V68F MbCO were selected for experimental and theoretical analyses. Fourier transform infrared (FTIR) spectroscopy and density functional theory (DFT) calculations were used to interpret the effects of the electrostatic environment on the B state bands. The imidazole side chain of His64 appears to be the primary cause of the observed Stark splitting. The high-frequency B1 band is assigned to the CO orientation in which the carbon (white atom) is directed toward the heme iron and the Nepsilon-H proton of His64. At low temperatures, CO molecules in the opposite orientational conformer, B2 with the O atom (red) toward His64, first rotate by 180 degrees into the more stable B1 state and then rebind.  相似文献   

14.
Many electron spin resonance (ESR) spectra of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) radical adducts from the reaction of organic hydroperoxides with heme proteins or Fe(2+) were assigned to the adducts of DMPO with peroxyl, alkoxyl, and alkyl radicals. In particular, the controversial assignment of DMPO/peroxyl radical adducts was based on the close similarity of their ESR spectra to that of the DMPO/superoxide radical adduct in conjunction with their insensitivity to superoxide dismutase, which distinguishes the peroxyl adducts from the DMPO/superoxide adduct. Although recent reports assigned the spectra suggested to be DMPO/peroxyl radical adducts to the DMPO/methoxyl adduct based on independent synthesis of the adduct and/or (17)O-labeling, (17)O-labeling is extremely expensive, and both of these assignments were still based on hyperfine coupling constants, which have not been confirmed by independent techniques. In this study, we have used online high performance liquid chromatography (HPLC or LC)/ESR, electrospray ionization-mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) to separate and directly characterize DMPO oxygen-centered radical adducts formed from the reaction of Fe(2+) with t-butyl or cumene hydroperoxide. In each reaction system, two DMPO oxygen-centered radical adducts were separated and detected by online LC/ESR. The first DMPO radical adduct from both systems showed identical chromatographic retention times (t(R) = 9.6 min) and hyperfine coupling constants (a(N) = 14.51 G, a(H)(beta) = 10.71 G, and a(H)(gamma) = 1.32 G). The ESI-MS and MS/MS spectra demonstrated that this radical was the DMPO/methoxyl radical adduct, not the peroxyl radical adduct as was thought at one time, although its ESR spectrum is nearly identical to that of the DMPO/superoxide radical adduct. Similarly, based on their MS/MS spectra, we verified that the second adducts (a(N) = 14.86 G and a(H)(beta) = 16.06 G in the reaction system containing t-butyl hydroperoxide and a(N) = 14.60 G and a(H)(beta) = 15.61 G in the reaction mixture containing cumene hydroperoxide), previously assigned as DMPO adducts of t-butyloxyl and cumyloxyl radical, were indeed from trapping t-butyloxyl and cumyloxyl radicals, respectively.  相似文献   

15.
HNO can interact with numerous heme proteins, but atomic level structures are largely unknown. In this work, various structural models for the first stable HNO heme protein complex, MbHNO (Mb, myoglobin), were examined by quantum chemical calculations. This investigation led to the discovery of two novel structural models that can excellently reproduce numerous experimental spectroscopic properties. They are also the first atomic level structures that can account for the experimentally observed high stabilities. These two models involve two distal His conformations as reported previously for MbCNR and MbNO. However, a unique dual hydrogen bonding feature of the HNO binding was not reported before in heme protein complexes with other small molecules such as CO, NO, and O(2). These results shall facilitate investigations of HNO bindings in other heme proteins.  相似文献   

16.
We report a new approach for the fast photochemical oxidation of proteins (FPOP) whereby iodine species are used as the modifying reagent. We generate the radicals by photolysis of iodobenzoic acid at 248 nm; the putative iodine radical then rapidly modifies the target protein. This iodine-radical labeling is sensitive, tunable, and site-specific, modifying only histidine and tyrosine residues in contrast to OH radicals that modify 14 amino-acid side chains. We iodinated myoglobin (Mb) and apomyoglobin (aMb) in their native states and analyzed the outcome by both top-down and bottom-up proteomic strategies. Top-down sequencing selects a certain level (addition of one I, two I's) of modification and determines the major components produced in the modification reaction, whereas bottom-up reveals details for each modification site. Tyr146 is found to be modified for aMb but less so for Mb. His82, His93, and His97 are at least 10 times more modified for aMb than for Mb, in agreement with NMR studies. For carbonic anhydrase and its apo form, there are no significant differences of the modification extents, indicating their similarity in conformation and providing a control for this approach. For lispro insulin, insulin-EDTA, and insulin complexed with zinc, iodination yields are sensitive to differences in insulin oligomerization state. The iodine radical labeling is a promising addition to protein footprinting methods, offering higher specificity and lower reactivity than ?OH and SO(4)(-?), two other radicals already employed in FPOP.  相似文献   

17.
To address the role of the secondary hydroxyl group of heme a/o in heme-copper oxidases, we incorporated Fe(III)-2,4 (4,2) hydroxyethyl vinyl deuterioporphyrin IX, as a heme o mimic, into the engineered heme-copper center in myoglobin (sperm whale myoglobin L29H/F43H, called Cu(B)Mb). The only difference between the heme b of myoglobin and the heme o mimic is the substitution of one of the vinyl side chains of the former with a hydroxyethyl group of the latter. This substitution resulted in an approximately 4 nm blue shift in the Soret band and approximately 20 mV decrease in the heme reduction potential. In a control experiment, the heme b in Cu(B)Mb was also replaced with a mesoheme, which resulted in an approximately 13 nm blue shift and approximately 30 mV decrease in the heme reduction potential. Kinetic studies of the heme o mimic-substituted Cu(B)Mb showed significantly different reactivity toward copper-dependent oxygen reduction from that of the b-type Cu(B)Mb. In reaction with O2, Cu(B)Mb with a native heme b showed heme oxygenase activity by generating verdoheme in the presence of Cu(I). This heme degradation reaction was slowed by approximately 19-fold in the heme o mimic-substituted Cu(B)Mb (from 0.028 s(-1) to 0.0015 s(-1)), while the mesoheme-substituted Cu(B)Mb shared a similar heme degradation rate with that of Cu(B)Mb (0.023 s(-1)). No correlation was found between the heme reduction potential and its O2 reactivity. These results strongly suggest the critical role of the hydroxyl group of heme o in modulating heme-copper oxidase activity through participation in an extra hydrogen-bonding network.  相似文献   

18.
Distal hydrogen bonding in natural dioxygen binding proteins is crucial for the discrimination between different potential ligands such as O2 or CO. In the present study, we probe the chemical requirements for proper distal hydrogen bonding in a series of synthetic model compounds for dioxygen‐binding heme proteins. The model compounds 1‐Co to 7‐Co bear different distal residues. The hydrogen bonding in their corresponding dioxygen adducts is directly measured by pulse EPR spectroscopy. The geometrical requirements for this interaction to take place were found to be narrow and very specific. Only two model complexes, 1‐Co and 7‐Co , form a hydrogen bond to bound dioxygen, which was characterized in terms of geometry and nature of the bond. The geometry and dipolar nature of this interaction in 1‐Co ‐O2 is more similar to the one in natural cobalt myoglobin (Co‐Mb), making 1‐Co the best model compound in the entire series.  相似文献   

19.
采用还原法制备了AuNPs/MWCNTs复合材料,并构建了氧化还原蛋白质的固定化和生物传感界面AuNPs/MWCNTs/GC电极.以肌红蛋白(Myoglobin,Mb)为例,研究了固定化蛋白质在AuNPs/MWCNTs/GC电极上的直接电化学.结果表明,AuNPs/MWCNTs复合材料不仅能有效地促进Mb与电极表面的直接电子转移,而且能很好地保持固定化Mb的生物催化活性.Mb/AuNPs/MWCNTs/GC电极对H2O2具有良好的电催化还原性能,其线性响应范围为1~138μmol·L-1,检测限为0.32μmol·L-1(S/N=3),并具有较低的米氏常数(0.143 mmol·L-1).该电极操作简单,响应迅速,稳定性和重现性好,有望用于蛋白质的固定化及第三代生物传感器的制备.  相似文献   

20.
《Analytical letters》2012,45(13):2103-2115
Abstract

Direct electrochemistry and electrocatalysis of two heme proteins, hemoglobin (Hb) and myoglobin (Mb), incorporated in polyethylene glycol (PEG) films, were studied by cyclic voltammetry. The two proteins exhibited a pair of well‐defined, quasi‐reversible cyclic voltammetric peaks with the apparent formal potential at about ?0.21 V (Hb) and ?0.22 V (Mb), respectively, vs. saturated calomel electrode (SCE) in pH 5.0 acetate buffer solution, characteristic of the h eme Fe(III)/Fe(II) redox couples, indicating enhanced electron transfer between the proteins and the substrate electrode in the PEG film environment. The protein–PEG films could also exhibit excellent stability. Meanwhile, positions of Soret absorption band of the proteins in the PEG films suggested that the heme proteins kept their secondary structure similar to their native state in the medium pH range. Oxygen, trichloroacetic acid, nitric oxide, and hydrogen peroxide could all be catalytically reduced by Hb or Mb in PEG films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号