首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
以Y2O3粗粉、Nd2O3、硝酸和氨水为原料,通过共沉淀法制备了Nd:Y2O3透明陶瓷纳米粉体,利用热重/差热分析(TG/DTA)、红外光谱(FTIR)、粉末X射线衍射(XRD)、透射电镜(TEM)以及能谱分析(EDS)等方法对合成的Nd:Y2O3纳米粉体进行了表征.结果表明,在前驱物中添加适量SO42-离子能减轻煅烧得到的Nd:Y2O3纳米粉体粒子的团聚,使Nd:Y2O3纳米粒子的粒度均匀并呈球形分布.在600~1000℃煅烧3 h所得粉体粒子的粒径在20~40 nm之间,具有较好的分散性.  相似文献   

2.
以Y2O3粗粉、Nd2O3、硝酸和氨水为原料,通过共沉淀法制备了Nd∶Y2O3透明陶瓷纳米粉体,利用热重/差热分析(TG/DTA)、红外光谱(FTIR)、粉末X射线衍射(XRD)、透射电镜(TEM)以及能谱分析(EDS)等方法对合成的Nd∶Y2O3纳米粉体进行了表征。结果表明,在前驱物中添加适量SO4^2-离子能减轻煅烧得到的Nd∶Y2O3纳米粉体粒子的团聚,使Nd∶Y2O3纳米粒子的粒度均匀并呈球形分布。在600~1000℃煅烧3 h所得粉体粒子的粒径在20~40 nm之间,具有较好的分散性。  相似文献   

3.
以Y2O3和Yb2O3为原料,采用柠檬酸溶胶-凝胶法制备了Yb:Y2O3纳米粉体,将该粉体成型后在1500℃烧结7 h获得Yb:Y2O3陶瓷。XRD测试结果表明,Yb:Y2O3纳米粉体的合成温度为800℃。扫描电镜分析表明,Yb:Y2O3粉体的平均直径为40 nm左右。差热-热重分析表明,Yb:Y2O3纳米前驱粉体中柠檬酸和硝酸等在300℃左右分解。荧光光谱分析发现Yb:Y2O3陶瓷的最强荧光发射峰位于1030 nm,是Yb3+的2F7/2-2F5/2谱项导致的荧光发射。  相似文献   

4.
SrCe0.95Y0.05O3-δ是一种高温质子导体,本研究采用溶胶—凝胶法合成了 SrCe0.95Y0.05O3-δ纳米粉体,并以该粉体烧制得固体复合氧化物电解质陶瓷,测 定了其在中温区间(400-600℃)的电导率,结果表明不同气氛对其电导率有很大影 响.用该陶瓷在固态质子传导电他中常压下以氮气和氢气为原料合成了氨,并研究 了影响氨合成的关键因素,确定了合适的工作温度,在常压下480℃时氨的产率可 达10^-9mol/(s.cm^-2)以上.  相似文献   

5.
共沉淀-熔盐焙烧法制备Y2O3:Eu及其发光性能的研究   总被引:2,自引:0,他引:2  
采用共沉淀-熔盐焙烧法制备了Y2O3:Eu红色荧光粉,研究分析了EDTA、柠檬酸+氨水、淀粉等3类络合剂、沉淀温度及熔盐对其发光性能、粒度及形貌等的影响.研究结果表明: 采用柠檬酸+氨水为络合剂、草酸为沉淀剂制备钇铕的草酸盐前驱体,然后加入(Na2CO3+S+NaCl)复合熔盐在1200 ℃下焙烧2 h即可制得发光强度高出商用粉5%的近球形Y2O3:Eu.  相似文献   

6.
 采用柠檬酸法合成了 BaCeO3 和掺杂 Y3+的 BaCe0.9Y0.1O3-δ 复合氧化物, 以 Ru3(CO)12 为前体, 利用浸渍法制备了 Ru/BaCeO3 和 Ru/BaCe0.9Y0.1O3-δ 催化剂. 通过 X 射线衍射、扫描电镜和透射电镜技术对样品进行了表征, 并在固定床反应器中考察了催化剂的氨合成反应活性. 结果表明, 载体 BaCeO3 的稳定性优于 BaCe0.9Y0.1O3-δ, 但 Ru/BaCe0.9Y0.1O3-δ 催化剂的氨合成活性明显高于 Ru/BaCeO3, 在 3.0 MPa, 15 000 h1, 425 oC 反应时, Ru/BaCe0.9Y0.1O3-δ 催化剂上氨合成反应速率达到 432.5 ml/(g•h), 是 Ru/BaCeO3 催化剂的 1.6 倍. 这种活性和稳定性的显著差异来自载体中 Ce4+ 与 Ru 纳米粒子间的电子作用.  相似文献   

7.
用干压法制备了Ni-BaCe0.9Nd01O3-δ多孔金属陶瓷阳极,并在阳极基膜上制备出致密的BaCe0.9Nd0.1O3-δ固体电解质薄膜.薄膜的厚度约为40 μm,致密均匀.测定了多层膜结构BaCe0.9Nd0.1O3-δ在干燥氮气/湿润氢气气氛中的电导率,结果表明其电导率要比厚膜BaCe0.9Nd0.1O3-δ和SrCe0.95Y0.05O3-δ(SCY)要高.将多层膜材料用于固态质子传导电池中,在常压下以氮气和氢气为原料合成了氨气.结果表明,与SCY固体电解质比较,氨的产率提高了一个数量级以上.  相似文献   

8.
分别通过溶胶-凝胶法和高温固相反应法制备了BaCe0.5Zr0.4Y0.1O3-δ粉体.采用热重-差热分析(TG-DTA),粉末X射线衍射(XRD),扫描电子显微镜(SEM),傅立叶红外衍射(FT-IR),N2吸附-脱附等方法对所制备的粉体进行了表征.结果表明:用溶胶-凝胶法在1200 ℃×10 h可以合成纯的BaCe0.5Zr0.4Y0.1O3-δ粉体,合成温度比传统的高温固相反应法降低400 ℃左右;溶胶-凝胶法合成粉体具有多孔结构特征,与固相法合成粉体相比具有较高的比表面积.但致密化试验表明:溶胶-凝胶法合成粉体与固相法合成粉体相比具有较低的烧结活性.溶胶-凝胶法合成粉体颗粒表面残余的有机基团和颗粒内部的大量微孔将在致密化过程中产生空间位阻,从而影响高温下原子的迁移,阻碍材料的致密化过程.  相似文献   

9.
无机溶胶凝胶法制取Y2O3纳米微粒   总被引:19,自引:6,他引:19  
以廉价无机盐为原料,采用溶胶凝胶法制备出尺度均匀,一次颗粒尺寸平均为60nm,颗粒呈球形的高纯Y2O3,纳米微粒。研究发现适量SO4^2-离子的添加对生成前驱物溶胶及煅烧得到球形的Y2O3纳米微粒起关键作用。对前驱物在煅烧过程中的物相变化进行了研究,分析了煅烧温度对产物粒度和纯度的影响,结果表明在不使生成物颗粒过分长大的前提下,升高煅烧温度有助于制取高纯和晶化完全的Y2O3微粉。  相似文献   

10.
采用溶胶-凝胶法, 以低于固相合成法150~250 ℃的温度进行烧结, 分别制备了BaCe0.9Y0.1O3-α和BaCe0.5Zr0.4Y0.1O3-α固体电解质. 应用AUTOLAB PGSTA 30型电化学工作站测定了两种电解质在不同温度下的阻抗谱, 在350~800 ℃范围内电导率分别为1.62×10-4~6.43×10-3 S·cm-1, 2.52×10-5~3.73×10-3 S·cm-1, 电导激活能分别为0.54和0.84 eV. 同时用高温固相合成法合成了BaCe0.9Y0.1O3-α质子导体, 在相同条件下其电导率为1×10-4~4×10-3 S·cm-1, 激活能为0.50 eV. 实验结果表明 用溶胶-凝胶法得到的材料在烧结温度低于固相合成法150~250 ℃的情况下, 制备出的样品电导率高;对于同一质子导体BaCe0.9Y0.1O3-α, 用Zr代替部分Ce, 固体电解质的电导率明显降低.  相似文献   

11.
采用溶胶 凝胶法合成了BaZr0.9Y0.1O3-δ(BZY),BaCe0.2Zr0.7Y0.1O3-δ(BCZY)固体电解质前驱体,并在1300℃烧结成致密陶瓷。采用热重差热分析(TG DTA),X射线衍射分析(XRD)及电镜测试(SEM,TEM)对样品进行了表征。并以烧结体样品为固体电解质、银钯作电极,测定了其在不同气氛和温度下的电导率。将该陶瓷用于固态质子传导电池中,在常压下以氮气和氢气为原料合成了氨气。结果表明,氨的比产率可达2.93×10-9mol·s-1·cm-2。  相似文献   

12.
纳米晶SrCe0.95Yb0.05O3-α烧结特性的研究   总被引:1,自引:0,他引:1  
本文采用柠檬酸盐法制备的SrCe0.95Yb0.05O3-α纳米粉体.将SrC e0.95Yb0.05O3-α纳米粉于3MPa压力下压制成型,在不同温度下进行烧结.对SrCe0.95Yb0.05O3-α纳米粉烧结过程进行研究.实验结果表明 :SrCe0.95Yb0.05O3-α纳米粉体样品片烧结收缩率随烧结温度升高而上升,于1300~1400℃烧结速率最大,1500℃样品片烧结收缩率达到相同条件常规粉体烧结收缩率的7倍,1600℃所得样品片致密度达到最大.并用XRD,SEM等测试手段,对其烧结特性进行了表征.  相似文献   

13.
采用柠檬酸溶胶鄄凝胶法制备CeO2基固溶体催化剂(Ce0.7Zr0.3O2-δ、Ce0.7Pr0.3O2-δ和Ce0.7Gd0.3O2-δ), 并考察了固溶体和三种常用载体(TiO2、SiO2和Al2O3)及其负载KNO3后的催化碳黑燃烧活性. 结果表明, CeO2基固溶体催化剂具有很高的催化燃烧活性, 其活性接近TiO2、SiO2和Al2O3负载30%KNO3催化剂的活性. 因为纳米CeO2基固溶体的形成, 提高了催化剂的抗烧结能力, 使氧更活泼, 从而提高氧化还原性能, 有利于碳颗粒燃烧. 由于CeO2基固溶体本身的高活性, 因此KNO3的添加不能明显提高CeO2基固溶体催化剂(尤其是Ce0.7Zr0.3O2-δ和Ce0.7Pr0.3O2-δ)的催化燃烧活性, 但KNO3能显著提高TiO2, SiO2和Al2O3的催化燃烧活性.  相似文献   

14.
Ce-Zr-O固溶体的制备和表征   总被引:1,自引:3,他引:1  
采用硝酸盐直接分解法、共沉淀法、苹果酸溶胶 凝胶法和柠檬酸溶胶 凝胶法制备了Ce Zr O复合氧化物并进行了表征。溶胶 凝胶法制得的Ce Zr O为立方的Ce0 .5Zr0 .5O2 复合氧化物 (其中少量具有立方性质的t″相 ) ,而直接分解和共沉淀法制得的是由立方Ce0 .8Zr0 .2 O2 和四方Ce0 .2 Zr0 .8O2 固溶体组成的复合氧化物。不同制备方法制得的样品由于物相组成不同 ,还原性能也有较大差别。差热分析和X射线衍射分析结果表明 ,凝胶在燃烧的同时生成了Ce0 .5Zr0 .5O2 固溶体。  相似文献   

15.
 在由硝酸铝经氨水沉淀制备氧化铝的过程中,用蔗糖作为辅助剂制得了具有大比表面积的γ-Al2O3,并考察了蔗糖加入量对γ-Al2O3织构的影响. 将硝酸铝和蔗糖共溶于水,滴加氨水至Al3+全部沉淀(pH=5.2),所得沉淀连同母液一起在80 ℃水浴中搅拌得到溶胶,将溶胶于110 ℃失水后即得凝胶. 凝胶进一步失水后发生燃烧得到含碳的前体,再经600 ℃焙烧即得到γ-Al2O3(比表面积可达350 m2/g左右). 利用差热-热重分析、元素分析、氮吸附-脱附等温线、X射线粉末衍射和透射电子显微镜对前体及 γ-Al2O3 样品进行了表征. 结果表明,γ-Al2O3不但具有大的比表面积,而且孔径较小,分布较为集中. 通过改变蔗糖的用量,还可在一定程度上对γ-Al2O3的比表面积和孔结构等进行调控.  相似文献   

16.
以甘氨酸辅助的燃烧法和非晶态稀土DTPA配合物前驱体热分解法制备了Y2 O3 ∶Eu和Gd2 O3 ∶Eu纳米材料。X射线衍射表明燃烧法和配合物前驱体热分解法制备的纳米Y2 O3 ∶Eu均为立方相 ,而Gd2 O3 ∶Eu纳米材料则随制备条件不同可得到立方相或单斜相两种产物 ,发射光谱证实了这一结论。通过透射电子显微镜、扫描电子显微镜对不同方法制备的纳米材料的尺寸、形貌也进行了表征  相似文献   

17.
以硝酸镧和硝酸铁为氧化剂,柠檬酸为燃料,采用溶液燃烧法制备了钙钛矿型LaFeO3.通过XRD和SEM表征,分别研究了以乙二胺和NaOH溶液为pH调节剂,前驱物溶液在不同pH值条件下,对制备的纳米LaFeO3粉体的晶相组成和微观形貌的影响.结果表明:前驱物溶液pH值对燃烧产物的晶相组成、晶粒大小和微观相貌都有显著的影响....  相似文献   

18.
稀土纳米复合氧化物RE2O3:Eu(RE=Y,Gd)的制备及特性   总被引:21,自引:1,他引:21  
以甘氨酸辅助的燃烧法和非晶态稀土DTPA配合物前驱体热分解法制备了Y2O3:Eu和Gd2O3:Eu纳米材料。X射线衍射表明燃烧法和配合物前驱体热分解法制备的纳米Y2O3:Eu均为立方相,而GdO3:Eu纳米材料则随制备条件不同可得到立方相或单斜相两种产物,发射光谱证实了这一结论。通过透射电子显微镜、扫描电子显微镜对不同方法制备的纳米材料的尺寸、形貌也进行了表征。  相似文献   

19.
应用丝网印刷和共烧结制备LaNi0.6Fe0.4O3-δ/Sc0.1Zr0.9O1.95/LaNi0.6Fe0.4O3-δ对称电池.以硝酸铈和硝酸钆为原料,柠檬酸作燃料,燃烧合成Gd0.2Ce0.8O2(GDC)包覆的LaNi0.6Fe0.4O3-δ(LNF)阴极.实验表明,在750oC工作温度下,纯LaNi0.6Fe0.4O3-δ阴极的极化电阻为0.70Ω.cm2,而21.3%(by mass,下同,如无特殊标注均为质量分数)GDC包覆的LNF-GDC复合阴极的极化电阻最小(0.13Ω.cm2),活化能最低(136.80 kJ.mol-1),故其阴极性能最佳.GDC的包覆加速了气体/阴极/电解质三相界面反应区的扩散过程,降低了阴极极化电阻.  相似文献   

20.
水基溶胶-凝胶法制备稀土/碱土金属硅酸盐纳米粉   总被引:3,自引:0,他引:3  
采用水基溶胶凝胶法,以廉价的无机盐Y2O3,MgO为前驱物,Si(OC2H5)4为络合剂,PEG4000为复合表面活性剂,氨水调节pH值,并利用无水乙醇超声分散技术,成功制备了分散性良好的稀土碱土金属复合硅酸盐纳米粉xY2O3·yMgO·zSiO2(YMS),考察了初始溶液的pH值、温度及浓度对溶液—溶胶—凝胶转变的影响,并利用TG DTA,XRD,TEM分析手段对复合硅酸盐纳米粉YMS的性质进行了研究。实验表明,在60℃相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号