首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Noncovalent protein–ligand and protein–protein complexes are readily detected using electrospray ionization mass spectrometry (ESI MS). Furthermore, recent reports have demonstrated that careful use of electron capture dissociation (ECD) fragmentation allows covalent backbone bonds of protein complexes to be dissociated without disruption of noncovalent protein–ligand interactions. In this way the site of protein–ligand interfaces can be identified. To date, protein–ligand complexes, which have proven tractable to this technique, have been mediated by ionic electrostatic interactions, i.e., ion pair interactions or salt bridging. Here we extend this methodology by applying ECD to study a protein–peptide complex that contains no electrostatics interactions. We analyzed the complex between the 21 kDa p53-inhibitor protein anterior gradient-2 and its hexapeptide binding ligand (PTTIYY). ECD fragmentation of the 1:1 complex occurs with retention of protein–peptide binding and analysis of the resulting fragments allows the binding interface to be localized to a C-terminal region between residues 109 and 175. These finding are supported by a solution-phase competition assay, which implicates the region between residues 108 and 122 within AGR2 as the PTTIYY binding interface. Our study expands previous findings by demonstrating that top-down ECD mass spectrometry can be used to determine directly the sites of peptide–protein interfaces. This highlights the growing potential of using ECD and related top-down fragmentation techniques for interrogation of protein–protein interfaces.  相似文献   

2.
Noncovalent protein-ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS). Ligand binding stoichiometry can be determined easily by the ESI-MS method. The ability to detect noncovalent protein-ligand complexes depends, however, on the stability of the complexes in the gas-phase environment. Solution binding affinities may or may not be accurate predictors of their stability in vacuo. Complexes composed of cytidine nucleotides bound to ribonuclease A (RNase A) and ribonuclease S (RNase S) were detected by ESI-MS and were further analyzed by MS/MS. RNase A and RNase S share similar structures and biological activity. Subtilisin-cleavage of RNase A yields an S-peptide and an S-protein; the S-peptide and S-protein interact through hydrophobic interactions with a solution binding constant in the nanomolar range to generate an active RNase S. Cytidine nucleotides bind to the ribonucleases through electrostatic interactions with a solution binding constant in the micromolar range. Collisionally activated dissociation (CAD) of the 1:1 RNase A-CDP and CTP complexes yields cleavage of the covalent phosphate bonds of the nucleotide ligands, releasing CMP from the complex. CAD of the RNase S-CDP and CTP complexes dissociates the S-peptide from the remaining S-protein/nucleotide complex; further dissociation of the S-protein/nucleotide complex fragments a covalent phosphate bond of the nucleotide with subsequent release of CMP. Despite a solution binding constant favoring the S-protein/S-peptide complex, CDP/CTP remains electrostatically bound to the S-protein in the gas-phase dissociation experiment. This study highlights the intrinsic stability of electrostatic interactions in the gas phase and the significant differences in solution and gas-phase stabilities of noncovalent complexes that can result.  相似文献   

3.
Summary Water is known to play an important rôle in the recognition and stabilization of the interaction between a ligand and its site. This has important implications for drug design. Analyses of 19 high-resolution crystal structures of protein-ligand complexes reveal the multiple hydrogen-bonding feature of water molecules mediating protein-ligand interactions. Most of the water molecules (nearly 80%) involved in bridging the protein and the ligand can make three or more hydrogen bonds when distance and bond angles are used as criteria to define hydrogen-bonding interactions. Isotropic B-factors have been used to take into account the mobility of water molecules. The water molecules at binding sites bridge the protein and ligand, and interact with other water molecules to form a complex network of interconnecting hydrogen bonds. Some water molecules at the site do not directly bridge between the protein and the ligand, but may contribute indirectly to the stability of the complex by holding bridging water molecules in the right position through a network of hydrogen bonds. These water networks are probably crucial for the stability of the protein-ligand complex and are important for any site-directed drug design strategies.  相似文献   

4.
Specific and dynamic biological interactions pave the blueprint of signal networks in cell. For example, a great variety of specific protein-ligand interactions define how intracellular signals flow. Taking advantage of the specificity of these interactions, we postulate an “affinity-guided covalent conjugation” strategy to lock binding ligands through covalent reactions between the ligand and the receptor protein. The presence of a nucleophile close to the ligand binding site of a protein is sine qua none of this reaction. Specific noncovalent interaction of a ligand derivative (which contains an electrophile at a designed position) to the ligand binding site of the protein brings the electrophile to the close proximity of the nucleophile. Subsequently, a conjugation reaction spontaneously takes place between the nucleophile and the electrophile, and leads to an intermolecular covalent linkage. This strategy was first showcased in coiled coil peptides which include a cysteine mutation at a selected position. The short peptide sequence was used for covalent labeling of cell surface receptors. The same strategy was then used to guide the design of a set of protein Lego bricks for covalent assembly of protein complexes of unnatural geometry. We finally made “reactive peptides” for natural adaptor proteins that play significant roles in signal transduction. The peptides were designed to react with a single domain of the multidomain adaptor protein, delivered into the cytosol of neurons, and re-directed the intracellular signal of neuronal migration. The trilogy of protein labeling, assembly, and inhibition of intracellular signals, all through a specific covalent bond, fully demonstrated the generality and versatility of “affinity-guided covalent conjugation” in various applications.  相似文献   

5.
Fourier-transform ion cyclotron resonance instrumentation is uniquely applicable to an unusual new ion chemistry, electron capture dissociation (ECD). This causes nonergodic dissociation of far larger molecules (42 kDa) than previously observed (<1 kDa), with the resulting unimolecular ion chemistry also unique because it involves radical site reactions for similarly larger ions. ECD is highly complementary to the well known energetic methods for multiply charged ion dissociation, providing much more extensive protein sequence information, including the direct identification of N- versus C-terminal fragment ions. Because ECD only excites the molecule near the cleavage site, accompanying rearrangements are minimized. Counterintuitively, cleavage of backbone covalent bonds of protein ions is favored over that of noncovalent bonds; larger (>10 kDa) ions give far more extensive ECD if they are first thermally activated. This high specificity for covalent bond cleavage also makes ECD promising for studying the secondary and tertiary structure of gaseous protein ions caused by noncovalent bonding.  相似文献   

6.
Tandem mass spectrometry (MS/MS) of intact, noncovalently-bound protein-ligand complexes can yield structural information on the site of ligand binding. Fourier transform ion cyclotron resonance (FT-ICR) top-down MS of the 29 kDa carbonic anhydrase-zinc complex and adenylate kinase bound to adenosine triphosphate (ATP) with collisionally activated dissociation (CAD) and/or electron capture dissociation (ECD) generates product ions that retain the ligand and their identities are consistent with the solution phase structure. Increasing gas phase protein charging from electrospray ionization (ESI) by the addition of supercharging reagents, such as m-nitrobenzyl alcohol and sulfolane, to the protein analyte solution improves the capability of MS/MS to generate holo-product ions. Top-down proteomics for protein sequencing can be enhanced by increasing analyte charging.  相似文献   

7.
Electrostatic interactions play an important role in the formation of noncovalent complexes. Our previous work has highlighted the role of certain amino acid residues, such as arginine, glutamate, aspartate, and phosphorylated/sulfated residues, in the formation of salt bridges resulting in noncovalent complexes between peptides. Tandem mass spectrometry (MS) studies of these complexes using collision-induced dissociation (CID) have provided information on their relative stability. However, product-ion spectra produced by CID have been unable to assign specifically the site of interaction for the complex. In this work, tandem MS experiments were conducted on noncovalent complexes using both electron capture dissociation (ECD) and electron-transfer dissociation (ETD). The resulting spectra were dominated by intramolecular fragments of the complex with the electrostatic interaction site intact. Based upon these data, we were able to assign the binding site for the peptides forming the noncovalent complex.  相似文献   

8.
A Fourier-transform ion cyclotron resonance (FT-ICR) top-down mass spectrometry strategy for determining the adenosine triphosphate (ATP)-binding site on chicken adenylate kinase is described. Noncovalent protein-ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS), but the ability to detect protein-ligand complexes depends on their stability in the gas phase. Previously, we showed that collisionally activated dissociation (CAD) of protein-nucleotide triphosphate complexes yield products from the dissociation of a covalent phosphate bond of the nucleotide with subsequent release of the nucleotide monophosphate (Yin, S. et al., J. Am. Soc. Mass Spectrom. 2008, 19, 1199–1208). The intrinsic stability of electrostatic interactions in the gas phase allows the diphosphate group to remain noncovalently bound to the protein. This feature is exploited to yield positional information on the site of ATP-binding on adenylate kinase. CAD and electron capture dissociation (ECD) of the adenylate kinase-ATP complex generate product ions bearing monoand diphosphate groups from regions previously suggested as the ATP-binding pocket by NMR and crystallographic techniques. Top-down MS may be a viable tool to determine the ATP-binding sites on protein kinases and identify previously unknown protein kinases in a functional proteomics study.  相似文献   

9.
Knowledge about the structural and biophysical properties of proteins when they are free in solution and/or in complexes with other molecules is essential for understanding the biological processes that proteins regulate. Such knowledge is also important to drug discovery efforts, particularly those focused on the development of therapeutic agents with protein targets. In the last decade a variety of different covalent labeling techniques have been used in combination with mass spectrometry to probe the solution-phase structures and biophysical properties of proteins and protein—ligand complexes. Highlighted here are five different mass spectrometry—based covalent labeling strategies including: continuous hydrogen/deuterium (H/D) exchange labeling, hydroxyl radical-mediated footprinting, SUPREX (stability of unpurified proteins from rates of H/D exchange), PLIMSTEX (protein-ligand interaction by mass spectrometry, titration, and H/D exchange), and SPROX (stability of proteins from rates of oxidation). The basic experimental protocols used in each of the above-cited methods are summarized along with the kind of biophysical information they generate. Also discussed are the relative strengths and weaknesses of the different methods for probing the wide range of conformational states that proteins and protein-ligand complexes can adopt when they are in solution.  相似文献   

10.
Knowledge of the structure of protein?Cligand complexes can aid in understanding their roles within complex biological processes. Here we use electrospray ionization (ESI) coupled to a Fourier transform ion cyclotron resonance mass spectrometer to investigate the noncovalent binding of the macrocycle cucurbit[7]uril (CB7) to bovine insulin. Recent condensed-phase experiments (Chinai et al., J. Am. Chem. Soc. 133:8810?C8813, 2011) indicate that CB7 binds selectively to the N-terminal phenylalanine of the insulin B-chain. Competition experiments employing ESI mass spectrometry to assess complex formation between CB7 and wild type insulin B-chain vs. a mutant B-chain, confirm that the N-terminal phenylalanine plays in important role in solution-phase binding. However, analysis of fragment ions produced by electron capture dissociation (ECD) of CB7 complexed to intact insulin and to the insulin B-chain suggests a different picture. The apparent gas-phase binding site, as identified by the ECD, lies further along the insulin B-chain. Together, these studies thus indicate that the CB7 ligand migrates in the ESI mass spectrometry analysis. Migration is likely aided by the presence of additional interactions between CB7 and the insulin B-chain, which are not observed in the crystal structure. While this conformational difference may result simply from the removal of solvent and addition of excess protons by the ESI, we propose that the migration may be enhanced by charge reduction during the ECD process itself because ion-dipole interactions are key to CB7 binding. The results of this study caution against using ECD-MS as a stand-alone structural probe for the determination of solution-phase binding sites.  相似文献   

11.
We recently reported a new method for quantification of protein-ligand interaction by mass spectrometry, titration and H/D exchange (PLIMSTEX) for determining the binding stoichiometry and affinity of a wide range of protein-ligand interactions. Here we describe the method for analyzing the PLIMSTEX titration curves and evaluate the effect of various models on the precision and accuracy for determining binding constants using H/D exchange and a titration. The titration data were fitted using a 1:n protein:ligand sequential binding model, where n is the number of binding sites for the same ligand. An ordinary differential equation was used for the first time in calculating the free ligand concentration from the total ligand concentration. A nonlinear least squares regression method was applied to minimize the error between the calculated and the experimentally measured deuterium shift by varying the unknown parameters. A resampling method and second-order statistics were used to evaluate the uncertainties of the fitting parameters. The interaction of intestinal fatty-acid-binding protein (IFABP) with a fatty-acid carboxylate and that of calmodulin with Ca(2+) are used as two tests. The modeling process described here not only is a new tool for analyzing H/D exchange data acquired by ESI-MS, but also possesses novel aspects in modeling experimental titration data to determine the affinity of ligand binding.  相似文献   

12.
Summary If water molecules are strongly bound at a protein-ligand interface, they are unlikely to be displaced during ligand binding. Such water molecules can change the shape of the ligand binding site and thus affect strategies for drug design. To understand the nature of water binding, and factors influencing it, water molecules at the ligand binding sites of 26 high-resolution protein-ligand complexes have been examined here. Water molecules bound in deep grooves and cavities between the protein and the ligand are located in the indentations on the protein-site surface, but not in the indentations on the ligand surface. The majority of the water molecules bound in deep indentations on the protein-site surface make multiple polar contacts with the protein surface. This may indicate a strong binding of water molecules in deep indentations on protein-site surfaces. The local shape of the site surface may influence the binding of water molecules that mediate protein-ligand interactions.  相似文献   

13.
We present a comprehensive study for determining the binding affinity of a protein-ligand complex, using mass spectrometric methods. Mass spectrometry has been used to study noncovalent interactions for a number of years. However, the use of soft ionization mass spectrometry for quantitative analysis of noncovalently bound complexes is not widely accepted. This paper reports a comparison of MS methods against established methods such as surface plasmon resonance (SPR) and circular dichroism (CD) whose suitability for the quantitative assessment of noncovalent interactions is well known. ESI titration and MALDI-SUPREX were used as representative mass spectrometric methods for this work. We chose to study the calmodulin-melittin complex that presents three challenges: (i) it exhibits a high affinity (low nanomolar KD); (ii) complexes are formed only in the presence of a coactivator, calcium ions in this case; and (iii) the protein and the complex show a different ionization efficiency. Dissociation constants were obtained from each method for the selected system and compared thoroughly to elucidate pros and cons of the selected methodologies in terms of their ability for the determination of binding constants of protein-ligand complexes. ESI titration, SPR, CD and MALDI-SUPREX yielded KD values in the low nanomolar range that are in general agreement with an older value reported in the literature. We also critically evaluated the limitations in particular of the MS methods and the associated data evaluation procedures. We present an improved evaluation of SUPREX data, as well as a detailed error analysis for all methods used.  相似文献   

14.
Alternative mechanisms propose that protein folding in solution proceeds either through specific obligate intermediates or by a multiplicity of routes in a "folding funnel". These questions are examined in the gas phase by using a new method that provides details of the noncovalent binding of solvent-free protein ions. Capture of an electron by a multiply charged cation causes immediate dissociation (ECD) of a backbone bond, but with negligible excitation of noncovalent bonds; thus ECD of a linear protein ion produces two measurable fragment ions only if these are not held together by noncovalent bonds. Thermal unfolding of 9+ ions of cytochrome c proceeds through the separate unfolding of up to 13 backbone regions (represented by 44 bond cleavages) with melting temperatures of <26 to 140 degrees C. An 0.25 s laser IR pulse induces unfolding of 9+ ions in <4 s in six of these regions, followed by their refolding in 2 min. However, for the 15+ ions a laser IR pulse causes slower unfolding through poorly defined intermediates that leads to far more ECD products (63% increase in bond cleavages) after 1 min, even more than heating to 140 degrees C, with refolding to a more compact conformation in 10 min. Random isomerization appears to produce a dynamic mixture of conformers that folds through a variety of pathways to the most stable conformer(s), consistent with a "folding funnel"; this might also be considered as an extension of the classical view to a system with a far smaller free energy change yielding multiple conformers. As cautions to inferring solution conformational structure from gas-phase data, no structural relationship between these gaseous folding intermediates and those in solution is apparent, consistent with reduced hydrophobic bonding and increased electrostatic repulsion. Further, equilibrium folding of gaseous ions can require minutes, and even momentary unfolding of an intermolecular complex during this time can be irreversible.  相似文献   

15.
An improved potential mean force (PMF) scoring function, named KScore, has been developed by using 23 redefined ligand atom types and 17 protein atom types, as well as 28 newly introduced atom types for nucleic acids (DNA and RNA). Metal ions and water molecules embedded in the binding sites of receptors are considered explicitly by two newly defined atom types. The individual potential terms were devised on the basis of the high-resolution crystal and NMR structures of 2,422 protein-ligand complexes, 300 DNA-ligand complexes, and 97 RNA-ligand complexes. The optimized atom pairwise distances and minima of the potentials overcome some of the disadvantages and ambiguities of current PMF potentials; thus, they more reasonably explain the atomic interaction between receptors and ligands. KScore was validated against five test sets of protein-ligand complexes and two sets of nucleic-acid-ligand complexes. The results showed acceptable correlations between KScore scores and experimentally determined binding affinities (log K i's or binding free energies). In particular, KScore can be used to rank the binding of ligands with metalloproteins; the linear correlation coefficient ( R) for the test set is 0.65. In addition to reasonably ranking protein-ligand interactions, KScore also yielded good results for scoring DNA/RNA--ligand interactions; the linear correlation coefficients for DNA-ligand and RNA-ligand complexes are 0.68 and 0.81, respectively. Moreover, KScore can appropriately reproduce the experimental structures of ligand-receptor complexes. Thus, KScore is an appropriate scoring function for universally ranking the interactions of ligands with protein, DNA, and RNA.  相似文献   

16.
17.
Summary A new simple empirical function has been developed that estimates the free energy of binding for a given protein-ligand complex of known 3D structure. The function takes into account hydrogen bonds, ionic interactions, the lipophilic protein-ligand contact surface and the number of rotatable bonds in the ligand. The dataset for the calibration of the function consists of 45 protein-ligand complexes. The new energy function reproduces the binding constants (ranging from 2.5·10-2 to 4·10-14 M, corresponding to binding energies between -9 and -76 kJ/mol) of the dataset with a standard deviation of 7.9 kJ/mol, corresponding to 1.4 orders of magnitude in binding affinity. The individual contributions to protein-ligand binding obtained from the scoring function are: ideal neutral hydrogen bond: -4.7 kJ/mol; ideal ionic interaction: -8.3 kJ/mol; lipophilic contact: -0.17 kJ/mol Å2; one rotatable bond in the ligand: +1.4 kJ/mol. The function also contains a constant contribution (+5.4 kJ/mol) which may be rationalized as loss of translational and rotational entropy. The function can be evaluated very fast and is therefore also suitable for application in a 3D database search or de novo ligand design program such as LUDI.  相似文献   

18.
A series of pyridine-based derivatives of the antimetastatic Ru(III) complex imidazolium [trans-RuCl(4)(1H-imidazole)(DMSO-S)] (NAMI-A) have been synthesized along with their sodium-ion compensated analogues. These compounds have been characterized by X-ray crystallography, electron paramagnetic resonance (EPR), NMR, and electrochemistry, with the goal of probing their noncovalent interactions with human serum albumin (hsA). EPR studies show that the choice of imidazolium ligands and compensating ions does not strongly influence the rates of ligand exchange processes in aqueous buffer solutions. By contrast, the rate of formation and persistence of interactions of the complexes with hsA is found to be strongly dependent on the properties of the axial ligands. The stability of noncovalent binding is shown to correlate with the anticipated ability of the various pyridine ligands to interact with the hydrophobic binding domains of hsA. These interactions prevent the oligomerization of the complexes in solution and limit the rate of covalent binding to albumin amino acid side chains. Electrochemical studies demonstrate relatively high reduction potentials for these complexes, leading to the formation of Ru(II) species in aqueous solutions containing biological reducing agents, such as ascorbate. However, EPR measurements indicate that while noncovalent interactions with hsA do not prevent reduction, covalent binding produces persistent mononuclear Ru(III) species under these conditions.  相似文献   

19.
Extensive backbone fragmentation resulting in a‐, b‐, c‐, x‐, y‐ and z‐type ions is observed of singly and doubly charged peptide ions through their interaction with a high kinetic energy beam of argon or helium metastable atoms in a modified quadrupole ion trap mass spectrometer. The ability to determine phosphorylation‐sites confirms the observation with previous reports and we report the new ability to distinguish between leucine and isoleucine residues and the ability to cleave two covalent bonds of the proline ring resulting in a‐, b‐, x‐, y‐, z‐ and w‐type ions. The fragmentation spectra indicate that fragmentation occurs through nonergodic radical ion chemistry akin to electron capture dissociation (ECD), electron transfer dissociation (ETD) and electron ionization dissociation mechanisms. However, metastable atom‐activated dissociation mass spectrometry demonstrates three apparent benefits to ECD and ETD: (1) the ability to fragment singly charged precursor ions, (2) the ability to fragment negatively charged ions and (3) the ability to cleave the proline ring that requires the cleavage of two covalent bonds. Helium metastable atoms generated more fragment ions than argon metastable atoms for both substance P and bradykinin regardless of the precursor ion charge state. Reaction times less than 250 ms and efficiencies approaching 5% are compatible with on‐line fragmentation, as would be desirable for bottom‐up proteomics applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The method of conserved core substructure matching (CSM) for the overlay of protein-ligand complexes is described. The method relies upon distance geometry to align structurally similar substructures without regard to sequence similarity onto substructures from a reference protein empirically selected to include key determinants of binding site location and geometry. The error in ligand position is reduced in reoriented ensembles generated with CSM when compared to other overlay methods. Since CSM can only succeed when the selected core substructure is geometrically conserved, misalignments only rarely occur. The method may be applied to reliably overlay large numbers of protein-ligand complexes in a way that optimizes ligand position at a specific binding site or subsite or to align structures from large and diverse protein families where the conserved binding site is localized to only a small portion of either protein. Core substructures may be complex and must be chosen with care. We have created a database of empirically selected core substructures to demonstrate the utility of CSM alignment of ligand binding sites in important drug targets. A Web-based interface can be used to apply CSM to align large collections of protein-ligand complexes for use in drug design using these substructures or to evaluate the use of alternative core substructures that may then be shared with the larger user community. Examples show the benefit of CSM in the practice of structure-based drug design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号