首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Vibrational absorption and circular dichroism spectra of dextrorotatory, levorotatory, and racemic mixture of tert-butylphenylphosphinothioic acid have been measured in CCl(4) solutions in the 2000-900 cm(-1) region. The conformations for both tautomeric structures of (S)-tert-butylphenylphosphinothioic acid are investigated using the B3LYP functional with the 6-31G* basis set. For the most stable conformation, the absorption and VCD spectra are predicted ab initio using the B3LYP functional with 6-31G*, 6-311G(2d, 2p), 6-31+G, and 6-311G(3df, 3pd) basis sets. A different functional, B3PW91, was also used with the 6-31G* basis set. The predicted spectra are compared to the experimental spectra. The comparison indicates that (-)-tert-butylphenylphosphinothioic acid is of the (S)-configuration and exists in only one tautomeric structure and one conformation in CCl(4) solution.  相似文献   

2.
Enantiomeric tert-butylphenylphosphine oxides have been isolated via resolution of the racemate with mandelic acid and investigated by using vibrational circular dichroism (VCD). Vibrational absorption and circular dichroism spectra of dextrorotatory, levorotatory, and racemic mixture of tert-butylphenylphosphine oxide have been measured in CDCl(3) and CHCl(3) solutions in the 2000-900 cm(-)(1) region. Experimental spectra are compared with the ab initio predictions of absorption and VCD spectra obtained with density functional theory using B3LYP/6-31G basis set for different tautomeric structures and conformers of (S)-tert-butylphenylphosphine oxide. This comparison indicates that (-)-tert-butylphenylphosphine oxide is of the (S)-configuration and indicates only one tautomeric structure and one conformation predominant for tert-butylphenylphosphine oxide in CDCl(3) and CHCl(3) solutions.  相似文献   

3.
Mid-infrared vibrational unpolarised absorption and vibrational circular dichroism (VCD) spectra of CCl4 solutions of tert-butyl methyl sulfoxide (1) are reported. The spectra are compared to ab initio density functional theory (DFT) calculations carried out using two functionals, B3PW91 and B3LYP, and two basis sets, 6-31G* and TZ2P. The VCD spectra are calculated using Gauge-invariant atomic orbitals (GIAOs). The analysis of the VCD spectrum confirms the R(-)/S(+) absolute configuration of 1. The advantages and disadvantages of VCD spectroscopy in determining the absolute configurations of chiral sulfoxides are discussed.  相似文献   

4.
DFT calculations were performed on (S)-methyl tetrahydrofuran-2-carboxylate to facilitate the interpretation of IR and VCD spectra. The potential energy surface could not be described unambiguously using the 6-31G* basis set in combination with different density functionals including B1LYP, B3LYP, B3P86, B3PW91, B98, BHandH, BHandHLYP, MPW1PW91 and PBE1PBE. In contrast, a uniform conformational picture could be found using the cc-pVTZ basis set. Using this large basis set and the collection of nine functionals from above, the dipole and rotational strengths were calculated, and compared to experimental values which were extracted from the experimental IR and VCD spectra for (+)-(S)-methyl tetrahydrofuran-2-carboxylate. A detailed analysis on the agreement between experiment and simulated spectra was performed by assigning the experimental bands based on the harmonic fundamentals obtained for all functionals except BHandH, which performs badly over the whole line. Assessing the dipole strengths, all tested functionals perform equally well. For the rotational strengths, differences can be observed: B3LYP, B1LYP and B98 give the highest correlation with experiment, while PBE1PBE gives the lowest correlation. Comparable conclusions are obtained using a neighborhood similarity measure.  相似文献   

5.
The infrared (IR) and vibrational circular dichroism (VCD) spectra of guanosine-5'-hydrazide ( G-1), a powerful hydrogelator, have been measured and analyzed on the basis of ab initio modeling. B3LYP/6-31G** DFT calculations predict that G-1, forming a clear solution in deuterated DMSO, is present in monomeric form in this solvent, whereas strong gelation in a phosphate buffer is due to the formation of a guanine-quartet structure, ( G-1)4, in which the four G-1 are linked by hydrogen-bonded guanine moieties and stabilized by an alkali metal cation. The B3LYP/6-31G** IR and VCD spectra of the nearly planar G-quartet, whose structure is slightly distorted from the C4h symmetry, in which the G-bases interact via four Hoogsteen-type hydrogen bonds and a sodium cation is positioned in the middle of the G-quartet, are in very good agreement with the experimental spectra, indicating that this structure is the predominant structure in the gel state. The geometric parameters are discussed. This study is the first to use IR and VCD spectroscopies coupled with DFT calculations to elucidate the structure of a supramolecular species in a gel state and shows the VCD spectroscopy as a powerful method for investigating the structure of complex supramolecular self-assemblies where the use of other structural methods is limited.  相似文献   

6.
A thiocarbamide derivative containing Schiff base groups,1,5-bis[4-(dimethylamino)benzylidene]thiocarbonohydrazide,has been synthesized and characterized by elemental analysis,IR,1H NMR,UV and X-ray single-crystal diffraction.Density function theory(DFT) calculations at the B3LYP/6-31G* and PBE0/6-31G* levels for optimized geometries and electronic transition spectra have been performed.Comparative studies show that both B3LYP/6-31G* and PBE0/6-31G* methods can well reproduce the molecular structure,and the latter is more reliable than the former to simulate electronic spectra.NPA calculational results at the B3LYP/6-31G* level indicate the title compound to be a potential multidentate ligand to the metallic ions.Based on the vibrational analysis,thermodynamic properties at different temperatures have been obtained.  相似文献   

7.
Optimized geometries of 18-crown-6 (18ce6) were calculated at the HF/6-31G* and B3LYP/6-31G* levels of theory for the D3d, Ci(1) and Ci(2) conformations. At the B3LYP level, the Ci(2) optimized geometry was higher in energy by 23.3 and 18.8 kcal mol(-1) than the Ci(1) and D3d optimized geometries, respectively. Harmonic force field, vibrational frequencies and IR absorption intensities were calculated at the corresponding optimized geometry at the B3LYP level for the Ci(2) conformation. Scaled Ci(2) frequencies were compared with the experimental frequencies of free 18ce6, Ci(1) conformation, and 18ce6-urea complex, Ci(2) conformation. This comparison showed possible misassignments in the fundamental vibrational frequencies of 18ce6.  相似文献   

8.
A conformational search was performed for the 12-crown-4 (12c4)-alkali metal cation complexes using two different methods, one of them is the CONFLEX method, whereby eight conformations were predicted. Computations were performed for the eight predicted conformations at the HF/6-31+G*, MP2/6-31+G*//HF/6-31+G*, B3LYP/6-31+G*, MP2/6-31+G*//B3LYP/6-31+G*, and MP2/6-31+G* levels. The calculated energies predict a C4 conformation for the 12c4-Na+, -K+, -Rb+, and -Cs+ complexes and a C(s) conformation for the 12c4-Li+ complex to be the lowest energy conformations. For most of the conformations considered, the relative energies, with respect to the C4 conformation, at the MP2/6-31+G*//B3LYP/6-31+G* are overestimated, compared to those at the MP2/6-31+G* level, the highest level of theory considerd in this report, by 0.2 kcal/mol. Larger relative energy differences are attributed to larger differences between the B3LYP and MP2 optimized geomtries. Binding enthalpies (BEs) were calculated at the above-mentioned levels for the eight conformations. The agreement between the calculated and experimental BEs is discussed.  相似文献   

9.
The enantiomers of tert-butyl(dimethylamino)phenylphosphine-borane complex 2 have been separated by HPLC using cellulose tris-p-methylbenzoate as chiral stationary phase. The borane protection could be removed without racemization and the P-configuration of the free aminophosphine 1 has shown to be stable in solution. Infrared (IR) and vibrational circular dichroism (VCD) spectra have been measured in CD2Cl2 solution for both enantiomers. B3LYP/6-31+G(d) DFT calculations allowed a prediction that complex (S)-2 exists as three conformers in equilibrium and computed population-weighted IR and VCD spectra. Predicted and experimental IR and VCD spectra compared very well and indicate that enantiomer (+)-2 has the S absolute configuration. This assignment has been confirmed by an X-ray diffraction study on a single crystal of (+)-2. The crystal structure of enantiomerically pure 2 appears to be very close to the most stable computed conformer which proved to be predominant in solution.  相似文献   

10.
The structural and conformational features of 4-(2-phenylethyl)-5-(2-furyl)-2, 4-dihydro-3H-1,2,4-triazole-3-thione (1a), which can be related to the biological activity, have been investigated by X-ray diffraction and molecular modeling techniques. Ab initio method (RHF/6-31G) and density functional theory (B3LYP/6-31G(D)) have been used to calculate structural parameters, conformations, and relative energy of two tautomeric specious (1a and 1b) of the title compound. The geometry and the conformation of the thione form, 1a, is well reproduced by the DFT (B3LYP/6-31G(D)) method as compared with X-ray structure in which this form is found. The thione form is also predicted to be 14.42 kcal/mol more stable than the thiol form in the gas-phase by the DFT method.  相似文献   

11.
The vibrational, Raman, and IR, spectra of the five 12-crown-4 (12c4) complexes with Li+, Na+, K+, Rb+, and Cs+ alkali metal cations were measured. Except for a small shift of the position of some bands in the vibrational spectra of the Li+ complex, the vibrational spectra of the five complexes are so similar that it is concluded that the five complexes exist in the same conformation. B3LYP/6-31+G* force fields were calculated for six of the eight predicted conformations in a previous report (J. Phys. Chem. A 2005, 109, 8041) of the 12c4-Li+, Na+, and K+ complexes that are of symmetries higher than the C1 symmetry. These six conformations, in energy order, are of C4, Cs, Cs, C(2v), C(2v), and Cs symmetries. Comparison between the experimental and calculated vibrational frequencies assuming any of the above-mentioned six conformations shows that the five complexes exist in the C4 conformation. This agrees with the fact that the five alkali metal cations are larger than the 12c4 ring cavity. The B3LYP/6-31+G* force fields of the C4 conformation of the Li+, Na+ and K+ complexes were scaled using a set of eight scale factors and the scale factors were varied so as to minimize the difference between the calculated and experimental vibrational frequencies. The root-mean-square (rms) deviations of the calculated frequencies from the experimental frequencies were 7.7, 5.6, and 5.1 cm(-1) for the Li+, Na+, and K+ complexes, respectively. To account for the earlier results of the Li+ complex that the Cs conformation is more stable than the C4 conformation by 0.16 kcal/mol at the MP2/6-31+G* level, optimized geometries of the complex were calculated for the C4 and Cs conformations at the MP2/6-311++G** level. The C4 conformation was calculated to be more stable than the Cs conformation by 0.13 kcal/mol.  相似文献   

12.
Ab initio calculations together with vibrational circular dichroism (VCD) have been used for studying the conformations of a quinoline-derived oligoamide bearing a terminal chiral residue. Three helically folded conformers of the dimer, trimer, and tetramer forms of the oligomer were optimized at the density functional theory (DFT) level using the B3LYP functional and the 6-31G* basis set. For each form, the three conformers differ in their helical handedness and in the conformation of the chiral end group. The calculated structures of the tetramer and also the proportions predicted between them based on their calculated Gibbs free energies differences match remarkably well with experimental data collected on an octamer. Specifically, a R-phenethyl terminal group gives rise to a 91:9 ratio between left handed and right handed helices. The predicted VCD spectrum calculated from the Boltzmann population of the individual conformer reproduces very well the experimental VCD spectrum of the tetramer in CDCl3 solution. The DFT calculations performed for the trimer also allow one to assess the preferred handedness of the helix and the conformation of the chiral end group, but the calculated relative populations differ slightly from experimental data. Finally, this study shows that the dimer fragment is not sufficient to obtain valuable information on the conformation of this aromatic oligoamide foldamer.  相似文献   

13.
The solid phase FT-IR and FT-Raman spectra of 4,5-dichloro-3-hydroxypyridazine have been recorded in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The spectra were interpreted with the aid of normal coordinate analysis following a full structure optimization and force field calculations based on the density functional theory (DFT) using the standard B3LYP/6-31G* and B3LYP/6-311+G** method and basis set combinations. The DFT force field transformed to natural internal coordinates was corrected by a well-established set of scale factors that were found to be transferable to the title compound. The IR and Raman spectra were predicted theoretically and compared with the experimental spectra.  相似文献   

14.
15.
The ground-state structure and electronic and vibrational spectra of octaethylporphyrin diacid (H4OEP2+) have been studied with the density functional theory. The geometrical parameters computed with B3LYP, PBE1PBE and mPW1PW91 functionals and 6-31G* basis sets are well consistent with the experimental values. Electronic absorption spectrum of H4OEP2+ has been studied with the time-dependent DFT method, and the calculated excitation energies and oscillator strengths are compared with the experimental results. The Raman and IR spectra of H4OEP2+ and the Raman spectrum of its N-deuterated analogue (D4OEP2+) were measured. The observed Raman and IR bands have been assigned based on the frequency calculations at the B3LYP/6-31G* level of theory.  相似文献   

16.
This paper presents a discussion of the interaction energies, conformations, vibrational absorption (VA, harmonic and anharmonic) and vibrational circular dichroism (VCD) spectra for conformers of monomeric chiral d(-)-lactic acid and their complexes with water at the DFT(B3LYP)/aug-cc-pVDZ and DFT(B3LYP)/aug-cc-pVTZ levels. A detailed analysis has been performed principally for the two most stable complexes with water, differing by lactic acid conformation. The VCD spectra were found to be sensitive to conformational changes of both free and complexed molecules, and to be especially useful for discriminating between different chiral forms of intermolecular hydrogen bonding complexes. In particular, we show that the VCD modes of an achiral water molecule after complex formation acquire significant rotational strengths whose signs change in line with the geometry of the complex. Using the theoretical prediction, we demonstrate that the VCD technique can be used as a powerful tool for structural investigation of intermolecular interactions of chiral molecules and can yield information complementary to data obtained through other molecular spectroscopy methods.  相似文献   

17.
Vibrational circular dichroism (VCD) measurements and density functional theory (DFT) calculations were used to obtain the absolute configuration of optically pure cryptophane-A molecule. This large molecule (120 atoms) that possess a globular shape, but no chiral centers, exceeds the molecular size of published structures for which VCD has been used to determine the absolute configuration. VCD spectra recorded in CDCl(3) solution for the two resolved enantiomers are near mirror images, and very good agreement between the observed IR and VCD spectra and intensity calculations performed at the DFT (B3PW91/6-31G) level establish, besides the absolute configuration, the preferential anti conformation of the aliphatic linkers of the chloroform-cryptophane-A complex. Experiments performed in CD(2)Cl(2) and C(2)D(2)Cl(4) solutions show no significant modifications in the IR and VCD spectra, indicating that the conformation of the aliphatic linkers is similar for empty (C(2)D(2)Cl(4) solution) and encaged (CDCl(3) and CD(2)Cl(2) solutions) cryptophane-A molecules.  相似文献   

18.
Enantiopure (+)-2,5-dimethylthiolane and (-)-2,5-dimethylsulfolane were prepared using literature procedures and investigated using vibrational circular dichroism (VCD). Experimental absorption and VCD spectra of (+)-2,5-dimethylthiolane and (-)-2,5-dimethylsulfolane in CCl(4) solution in the 2000-900 cm(-)(1) region were compared with the ab initio predictions of absorption and VCD spectra obtained with density functional theory using the B3LYP/6-311G(2d, 2p) basis set for different conformers of (2R,5R)-2,5-dimethylthiolane and (2R,5R)-2,5-dimethylsulfolane. This comparison indicates that (+)-2,5-dimethylthiolane is of the (2R,5R)-configuration and has two predominant conformations in CCl(4) solution. In addition, (-)-2,5-dimethylsulfolane is of (2R,5R)-configuration and has only one predominant conformation. The stereochemical assignment is in agreement with literature.  相似文献   

19.
The tautomeric stability and vibrational IR spectrum of 2-chloroadenine were studied using density functional theory (DFT) at B3LYP/6-31G* level. The amino N(9)H tautomer of 2-chloroadenine was predicted to be most stable. A scaled quantum mechanical (SQM) force field approach was used to calculate the vibrational frequencies of amino N(9)H form of 2-chloroadenine. The force constant scale factors were transferred from those of purine. The mean deviation between the predicted vibrational frequencies and the observed ones is 8.0 cm(-1). The results made it possible to give complete assignments of the IR spectrum of this molecule.  相似文献   

20.
Infrared spectra of 1-phenyltetrazole (C7N4H6) and 5-chloro-1-phenyltetrazole (C7N4H5Cl) isolated in argon matrixes (T=8 K) and in the solid state (at room temperature) were studied. DFT(B3LYP)/6-31G* calculations predict the minimum energy conformation of 1-phenyltetrazole as being non-planar, with the two rings (phenyl and tetrazole) twisted by 29°. For 5-chloro-1-phenyltetrazole, the optimized dihedral angle between the two rings is larger (48°). The theoretically calculated IR spectra of both compounds fit well the spectra observed experimentally. This allowed a reliable assignment of observed IR absorption bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号