首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous-variable measure-device-independent quantum key distribution (CV-MDI QKD) is proposed to remove all imperfections originating from detection. However, there are still some inevitable imperfections in a practical CV-MDI QKD system. For example, there is a fluctuating channel transmittance in the complex communication environments. Here we investigate the security of the system under the effects of the fluctuating channel transmittance, where the transmittance is regarded as a fixed value related to communication distance in theory. We first discuss the parameter estimation in fluctuating channel transmittance based on these establishing of channel models, which has an obvious deviation compared with the estimated parameters in the ideal case. Then, we show the evaluated results when the channel transmittance respectively obeys the two-point distribution and the uniform distribution. In particular, the two distributions can be easily realized under the manipulation of eavesdroppers. Finally, we analyze the secret key rate of the system when the channel transmittance obeys the above distributions. The simulation analysis indicates that a slight fluctuation of the channel transmittance may seriously reduce the performance of the system, especially in the extreme asymmetric case. Furthermore, the communication between Alice, Bob and Charlie may be immediately interrupted. Therefore, eavesdroppers can manipulate the channel transmittance to complete a denial-of-service attack in a practical CV-MDI QKD system. To resist this attack, the Gaussian post-selection method can be exploited to calibrate the parameter estimation to reduce the deterioration of performance of the system.  相似文献   

2.
We perform security analysis of a passive continuous-variable quantum key distribution (CV-QKD) protocol by considering the finite-size effect. In the passive CV-QKD scheme, Alice utilizes thermal sources to passively make preparation of quantum state without Gaussian modulations. With this technique, the quantum states can be prepared precisely to match the high transmission rate. Here, both asymptotic regime and finite-size regime are considered to make a comparison. In the finite-size scenario, we illustrate the passive CV-QKD protocol against collective attacks. Simulation results show that the performance of passive CV-QKD protocol in the finite-size case is more pessimistic than that achieved in the asymptotic case, which indicates that the finite-size effect has a great influence on the performance of the single-mode passive CV-QKD protocol. However, we can still obtain a reasonable performance in the finite-size regime by enhancing the average photon number of the thermal state.  相似文献   

3.
The secret key rate is one of the main obstacles to the practical application of continuous-variable quantum key distribution (CVQKD). In this paper, we propose a multiplexing scheme to increase the secret key rate of the CVQKD system with orbital angular momentum (OAM). The propagation characteristics of a typical vortex beam, involving the Laguerre–Gaussian (LG) beam, are analyzed in an atmospheric channel for the Kolmogorov turbulence model. Discrete modulation is utilized to extend the maximal transmission distance. We show the effect of the transmittance of the beam over the turbulent channel on the secret key rate and the transmission distance. Numerical simulations indicate that the OAM multiplexing scheme can improve the performance of the CVQKD system and hence has potential use for practical high-rate quantum communications.  相似文献   

4.
An improved continuous variable quantum key distribution (CVQKD) approach based on a heralded hybrid linear amplifier (HLA) is proposed in this study, which includes an ideal deterministic linear amplifier and a probabilistic noiseless linear amplifier. The CVQKD, which is based on an amplifier, enhances the signal-to-noise ratio and provides for fine control between high gain and strong noise reduction. We focus on the impact of two types of optical amplifiers on system performance: phase sensitive amplifiers (PSA) and phase insensitive amplifiers (PIA). The results indicate that employing amplifiers, local local oscillation-based CVQKD systems can enhance key rates and communication distances. In addition, the PIA-based CVQKD system has a broader application than the PSA-based system.  相似文献   

5.
Reconciliation is an essential procedure for continuous-variable quantum key distribution (CV-QKD). As the most commonly used reconciliation protocol in short-distance CV-QKD, the slice error correction (SEC) allows a system to distill more than 1 bit from each pulse. However, the quantization efficiency is greatly affected by the noisy channel with a low signal-to-noise ratio (SNR), which usually limits the secure distance to about 30 km. In this paper, an improved SEC protocol, named Rotated-SEC (RSEC), is proposed through performing a random orthogonal rotation on the raw data before quantization, and deducing a new estimator for the quantized sequences. Moreover, the RSEC protocol is implemented with polar codes. The experimental results show that the proposed protocol can reach up to a quantization efficiency of about 99%, and maintain at around 96% even at the relatively low SNRs (0.5,1), which theoretically extends the secure distance to about 45 km. When implemented with the polar codes with a block length of 16 Mb, the RSEC achieved a reconciliation efficiency of above 95%, which outperforms all previous SEC schemes. In terms of finite-size effects, we achieved a secret key rate of 7.83×103 bits/pulse at a distance of 33.93 km (the corresponding SNR value is 1). These results indicate that the proposed protocol significantly improves the performance of SEC and is a competitive reconciliation scheme for the CV-QKD system.  相似文献   

6.
We propose a unidimensional two-way continuous-variable quantum key distribution protocol with coherent states, where the sender modulates a single quadrature of the coherent states rather than both quadratures to simplify the structure of a two-way system. Security analysis is performed with a general attack strategy, known as two-mode attack, which helps to reduce limitations in the analysis. The performance of the protocol under all accessible two-mode attacks at fixed distance is illustrated. Further, two typical two-mode attack strategies are obtained from it, which are one-mode attack strategy and optimal two-mode attack strategy. Between them, the one-mode attack is the simplest form of the two-mode attack, while the optimal two-mode attack is the most complicated one. Simulations show that though the system is simplified, the performance of the two-way protocol with unidimensional modulation is still comparable to that of the counterpart with Gaussian modulation even against the optimal two-mode attack when Eve’s ability is maximized. Thus, the proposed protocol simplifies the two-way system while guaranteeing its performance to a certain extent. Especially in a practical system with short transmission distance and high excess noise, the protocol has a good application prospect.  相似文献   

7.
A saturation attack can be employed for compromising the practical security of continuous-variable quantum key distribution (CVQKD). In this paper, we suggest a countermeasure approach to resisting this attack by embedding an adjustable optical filter (AOF) in the CVQKD system. Numerical simulations illustrate the effects of the AOF-enabled countermeasure on the performance in terms of the secret key rate and transmission distance. The legal participants can trace back the information that has been eavesdropped by an attacker from the imperfect receiver, which indicates that this approach can be used for defeating a saturation attack in practical quantum communications.  相似文献   

8.
Atmospheric continuous-variable quantum key distribution (ACVQKD) has been proven to be secure theoretically with the assumption that the signal source is well protected by the sender so that it cannot be compromised. However, this assumption is quite unpractical in realistic quantum communication system. In this work, we investigate a practical situation in which the signal source is no longer protected by the legitimate parts, but is exposed to the untrusted atmospheric channel. We show that the performance of ACVQKD is reduced by removing the assumption, especially when putting the untrusted source at the middle of the channel. To improve the performance of the ACVQKD with the untrusted source, a non-Gaussian operation, called photon subtraction, is subsequently introduced. Numerical analysis shows that the performance of ACVQKD with an untrusted source can be improved by properly adopting the photon subtraction operation. Moreover, a special situation where the untrusted source is located in the middle of the atmospheric channel is also considered. Under direct reconciliation, we find that its performance can be significantly improved when the photon subtraction operation is manipulated by the sender.  相似文献   

9.
Long block length rate-compatible low-density parity-compatible (LDPC) codes are designed to solve the problems of great variation of quantum channel noise and extremely low signal-to-noise ratio in continuous-variable quantum key distribution (CV-QKD). The existing rate-compatible methods for CV-QKD inevitably cost abundant hardware resources and waste secret key resources. In this paper, we propose a design rule of rate-compatible LDPC codes that can cover all potential SNRs with single check matrix. Based on this long block length LDPC code, we achieve high efficiency continuous-variable quantum key distribution information reconciliation with a reconciliation efficiency of 91.80% and we have higher hardware processing efficiency and lower frame error rate than other schemes. Our proposed LDPC code can obtain a high practical secret key rate and a long transmission distance in an extremely unstable channel.  相似文献   

10.
Although the unconditional security of quantum key distribution (QKD) has been widely studied, the imperfections of the practical devices leave potential loopholes for Eve to spy the final key. Thus, how to evaluate the security of QKD with realistic devices is always an interesting and opening question. In this paper, we briefly review the development of quantum hacking and security evaluation technology for a practical decoy state BB84 QKD system. The security requirement and parameters in each module (source, encoder, decoder and detector) are discussed, and the relationship between quantum hacking and security parameter are also shown.  相似文献   

11.
In this paper, a continuous variable (CV) measurement-device-independent (MDI) quantum key distribution (QKD) protocol using Gaussian modulated coherent states is proposed. The MDI is first proposed to resist the attacks on the detection equipment by introducing an untrusted relay. However, the necessity of propagation of local oscillator between legitimate users and the relay makes the implementation of CV-MDI-QKD highly impractical. By introducing the plug-and-play (P&P) technique into CV-MDI-QKD, the problems of polarization drifts caused by environmental disturbance and the security loopholes during the local oscillator transmission are solved naturally. The proposed scheme is superior to the previous CV-MDI-QKD protocol on the aspect of implementation. The security bounds of the P&P CV-MDI-QKD under the Gaussian collective attack are analyzed. It is believed that the technique presented in this paper can be extended to quantum network.  相似文献   

12.
马鸿鑫  鲍皖苏  李宏伟  周淳 《中国物理 B》2016,25(8):80309-080309
We present a Trojan-horse attack on the practical two-way continuous-variable quantum key distribution system. Our attack mainly focuses on the imperfection of the practical system that the modulator has a redundancy of modulation pulsewidth, which leaves a loophole for the eavesdropper inserting a Trojan-horse pulse. Utilizing the unique characteristics of two-way continuous-variable quantum key distribution that Alice only takes modulation operation on the received mode without any measurement, this attack allows the eavesdropper to render all of the final keys shared between the legitimate parties insecure without being detected. After analyzing the feasibility of the attack, the corresponding countermeasures are put forward.  相似文献   

13.
Quantum key distribution (QKD) has attracted much attention due to its unconditional security. High-dimensional quantum key distribution (HD-QKD) is a brand-new type of QKD protocol that has many excellent advantages. Nonetheless, practical imperfections in realistic devices that are not considered in the theoretical security proof may have an impact on the practical security of realistic HD-QKD systems. In this paper, we research the influence of a realistic intensity modulator on the practical security of HD-QKD systems with the decoy-state method and finite-key effects. We demonstrate that there is a certain impact in the secret key rate and the transmission distance when taking practical factors into security analysis.  相似文献   

14.
The estimation of phase noise of continuous-variable quantum key distribution protocol with a local local oscillator (LLO CVQKD), as a major process in quantifying the secret key rate, is closely relevant to the intensity of the phase reference. However, the transmission of the phase reference through the insecure quantum channel is prone to be exploited by the eavesdropper (Eve) to mount attacks. Here, we introduce a polarization attack scheme against the phase reference. Presently, in a practical LLO CVQKD system, only part of the phase reference pulses are measured to compensate for the polarization drift of the quantum signal pulses in a compensation cycle due to the limited polarization measurement rate, while the other part of the phase reference pulses are not measured. We show that Eve can control the phase noise by manipulating the polarization direction of the unmeasured phase reference to hide her attack on the quantum signal. Simulations show that Eve can obtain partial or total key rates information shared between Alice and Bob as the transmission distance increases. Improving the polarization measurement rate to 100% or monitoring the phase reference intensity in real-time is of great importance to protect the LLO CVQKD from polarization attack.  相似文献   

15.
We propose a new counterfactual quantum cryptography protocol concerning about distributing a deterministic key.By adding a controlled blocking operation module to the original protocol [T.G.Noh,Phys.Rev.Lett.103(2009) 230501],the correlation between the polarizations of the two parties,Alice and Bob,is extended,therefore,one can distribute both deterministic keys and random ones using our protocol.We have also given a simple proof of the security of our protocol using the technique we ever applied to the original protocol.Most importantly,our analysis produces a bound tighter than the existing ones.  相似文献   

16.
Quantum Key Distribution Using Four-Qubit W State   总被引:3,自引:0,他引:3  
A new theoretical quantum key distribution scheme based on entanglement swapping is proposed, where four-qubit symmetric W state functions as quantum channel. It is shown that two legitimate users can secretly share a series of key bits by using Bell-state measurements and classical communication.  相似文献   

17.
A new theoretical quantum key distribution scheme based on entanglement swapping is proposed, where four-qubit symmetric W state functions as quantum channel. It is shown that two legitimate users can secretly share a series of key bits by using Bell-state measurements and classical communication.  相似文献   

18.
Oneofthemostintriguingandexcitingrecentdevelopmentsinquantummechanicsisthepredictionanddemonstrationofacryptographickeydistri...  相似文献   

19.
This paper proposes a new semi‐quantum key distribution protocol, allowing two “classical” participants without sophisticated quantum capability to establish a shared secret key under an untrusted third party (a quantum server). The proposed protocol is free from several well‐known attacks. Furthermore, the efficiency is better than the existing three‐party SQKD protocol in which the classical participants must have the quantum measurement capability.  相似文献   

20.
基于六光子量子避错码的量子密钥分发方案   总被引:3,自引:0,他引:3  
刘文予  李宁  王长强  刘玉 《光学学报》2005,25(11):568-1572
量子信道中不可避免存在的噪声将扭曲被传输的信息,对通信造成危害。目前克服量子信道噪声的较好方案是量子避错码(QEAC)。将量子避错码思想用于量子密钥分发,能有效克服信道中的噪声,且无需复杂的系统。用六光子构造了量子避错码,提出了一种丛于六光子避错码的量子密钥分发(QDK)方案。以提高量子密钥分发的量子比特效率和安全性为前提,对六光子避错码的所有可能态进行组合,得到一种六光子避错码的最优组合方法,可将两比特信息编码在一个态中,根据测肇结果和分组信息进行解码,得到正确信息的平均概率为7/16。与最近的基于四光子避错码的克服量子信道噪声的量子密钥分发方案相比,该方案的量子比特效率提高了16.67%,密钥分发安全性足它的3.5倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号