首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
以葡萄糖和纤维二糖为模型化合物研究了逆羟醛缩合速率与加氢速率之间的匹配对纤维素转化产物分布的影响。葡萄糖和纤维二糖在共浸渍的Ni-WO3/SBA-15催化剂和物理混合的Ni/SBA-15、WO3/SBA-15催化剂上具有不同的产物分布。葡萄糖和纤维二糖在不同钨基催化剂上具有不同的乙二醇收率,其顺序为WO3 < WO3/SBA-15 < (NH4)6W7O24·6H2O (偏钨酸铵),这与它们的颗粒粒径成反比。在相同钨基催化剂用量条件下,葡萄糖转化中乙二醇收率小于纤维二糖。  相似文献   

2.
采用等体积浸渍法制备了Ni-WO3/SBA-15催化剂,将其应用于纤维素的水相氢解.考察了温度对纤维素水解和其形貌的影响及Ni、WO3含量等对纤维素转化行为的影响.XRD表征结果表明,随着温度的升高纤维素颗粒粒径逐渐变小并趋于均一,结晶状态逐渐由晶型变为无定型态.H2-TPR结果表明,Ni和WO3间存在较强的相互作用,这种相互作用提高了W物种对C-C键的解离性能,同时,提高了Ni物种的加氢活性,促进了纤维素向乙二醇的转化.在3%Ni-15%WO3/SBA-15催化剂上,反应条件为230 ℃、6.0 MPa、6.0 h时,纤维素完全转化,乙二醇的产率达到70.7%.  相似文献   

3.
采用先电沉积后水热的方法将WO3负载于钛网上,后续采用电沉积负载CeO2制备CeO2-WO3/Ti催化剂用于柴油车尾气选择性催化还原(NH3-SCR)脱硝。通过固定床反应装置检测催化剂脱硝性能,考察了电沉积CeO2时间对催化剂脱硝性能的影响,结合SEM、XRD、XPS、H2-TPR、NH3-TPD和原位红外光谱等表征手段分析反应机制。结果表明,在WO3表面进行20 min电沉积CeO2的双组分催化剂NOx转化率提升最明显,在200℃时已达到91.89%,250-350℃均为100%。双组分催化剂表面负载了WO3纳米棒以及高度分散的CeO2,CeO2的负载引入Ce3+并提高了催化剂化学吸附氧所占比例,但样品对应氧化还原能力没有明显提升。中温段(250-350℃)脱硝性能提高的主要原因是复合后CeO...  相似文献   

4.
通过气液反应制备了纳米WO3光催化剂,并用紫外吸收光谱、粉末X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、能量散射谱(EDS)等手段对催化剂进行了表征.讨论了乙二醇加入量和表面活性剂十二烷基苯磺酸钠对催化剂粒度大小和形貌的影响.结果表明:当水和乙二醇的比例为25:75时所得WO3粒径为30 nm左右.在此比例条件下加入0.1 g表面活性剂十二烷基苯磺酸钠,可制得片状WO3,粒径约为80 nm.对自制的两种纳米WO3光催化剂在紫外光照射时降解苯酚的活性进行了初步探讨,两者的催化性能均明显优于商品WO3.  相似文献   

5.
采用微波液相法一步合成了固载型H3PW12O40/Bi2WO6光催化剂. 通过紫外-可见漫反射光谱(UV-Vis)、 场发射扫描电子显微镜(SEM)、 表面积及孔隙度(BET)测定、 氨气程序升温脱附(NH3-TPD)、 吡啶吸附红外光谱(Py-FTIR)和X射线衍射(XRD)对所合成催化剂的结构和性质进行了考察, 并以吡啶浓度为15 mg/g的模拟油对光催化剂的脱氮效果进行评价. 结果表明, 与传统浸渍固载法相比, 微波液相一步法不仅能高效合成H3PW12O40/Bi2WO6光催化剂, 且所合成的催化剂能被低能量的光激发. 固载H3PW12O40不但能提高Bi2WO6纳米颗粒的表面酸量, 还能通过改变Bi2WO6前驱液的酸强度来调控催化剂形貌. 在H3PW12O40固载量为15%(质量分数), 微波功率为800 W, 反应时间为90 min条件下得到的H3PW12O40/Bi2WO6的光催化脱氮活性最高, 在催化剂与模拟油质量比为1/300, 500 W氙灯光照60 min的最佳光催化反应条件下, 模拟油脱氮率达到92.63%.  相似文献   

6.
采用共沉淀法制备了不同CuO和WO3含量的CuO-WO3-ZrO2催化剂. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 X射线荧光光谱(XRF)、 N2气物理吸附、 氢气程序升温还原(H2-TPR)、 X射线光电子能谱(XPS)及程序升温脱附(TPD)等手段对催化剂的结构和表面性质进行了表征. 结果表明, WO3的引入可以调变ZrO2的晶型, 从而使催化剂的比表面积和孔径发生变化, 促进CuO在催化剂表面的分散, 并影响催化剂的酸碱性. 在苯甲醛加氢制备苯甲醇反应中, 以CuO质量分数为18%, WO3质量分数为10%的CuO-WO3-ZrO2为催化剂时苯甲醛单程转化率达到92.03%, 产物苯甲醇的选择性为94.76%.  相似文献   

7.
糖类化合物催化转化合成燃料和化学品为现有化石路线提供了可行的替代方案.碳化钨、氧化钨和钨酸等钨基催化剂具有催化糖分子碳-碳键选择性断裂生成乙二醇、丙二醇等C2,3产物的独特性能.然而,对该催化反应的机理还一直缺乏明确的认识.最近北京大学刘海超团队报道,糖分子的羰基、α-和β-羟基与三氧化钨(WO3)表面的两个邻近钨原子(W-O-W结构)配位,形成一种双钨三齿螯合物;该螯合物作为反应的关键中间体,引发羰基β-位的碳-碳键断裂,从而实现糖分子的选择裂解.该新反应机理不仅为糖化学提供了新的认识,而且为糖基生物质提供了一个经乙醇醛、甘油醛等C2,3中间体转化为化学品的有效策略.固体核磁表征结果表明,吸附到WO3表面的13C标记葡萄糖的C1、C2和C3三个碳原子与表面钨原子形成了C-O-W键,从而在去屏蔽作用下化学位移向低场移动,说明糖分子需要羰基以及α-和β-羟基三个官能团共同参与才具有反应活性.催化反应结果表明,含有W-O-W结构的钨基化合物均表现出催化糖分子裂解生成C2,...  相似文献   

8.
本工作在水热法制备WO3过程中直接引入Cr3+作为改性剂,其在非(001)晶面的选择性吸附,实现了WO3形貌从纳米棒到[001]取向超细纳米线(UNWs)的转变,最终所得Cr-WO3UNWs催化剂的比表面积可达297m2/g。此外,Cr3+的晶格掺杂和减缓结晶作用有效增加了WO3表面氧空位(L酸位点)浓度。在苯乙烯选择性氧化制苯甲醛反应中,最佳条件下(70℃、r(n((H2O2)/n苯乙烯)=2.0、6 h、m=30 mg),Cr-WO3 UNWs分别将苯乙烯转化率和苯甲醛选择性从单一WO3纳米棒的19.0%和49.6%提升到72.0%和84.6%,其催化性能的提升归结于以下两点:第一,超大比表面积可提供充足的反应活性位点;第二,L酸位点可将H2O2活化为W-O...  相似文献   

9.
单原子催化剂(single-atom catalyst,SAC)可以最大化金属原子利用率,并具有独特的电子特性,已经在各种催化反应中进行了广泛的探索。然而,与纳米催化剂相比,贵金属SAC在烃类氧化反应中通常被认为是不活泼的。在本文中,证明了WO3-TiO2负载的PtSAC (Pt1/WO3-TiO2)在光热协同催化氧化C3H8和C3H6这两种典型的挥发性有机化合物(VOCs)中表现出比相应的纳米催化剂(PtNP/WO3-TiO2)高得多的活性。研究发现,Pt1/WO3-TiO2和PtNP/WO3-TiO2都可以通过克服氧中毒来提高光热协同催化C3H8氧化...  相似文献   

10.
转化CO2为有机组分是缓解全球变暖和保障持续能源供给的有效方法之一.采用简易的离子交换结合水合肼还原法制备了一系列不同晶相Ag2WO4载银(Ag/Ag2WO4)的等离子共振光催化剂,并用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜-能量色散X射线光谱(SEM-EDS)、紫外-可见(UV-Vis)吸收光谱和比表面积测试对催化剂进行了表征.较之Ag2WO4, Ag/Ag2WO4在可见光催化还原CO2生成CH4时显示了明显提高的量子产率(QY)、能量投入产出比(EROEI)、转换数(TON),就Ag/α-Ag2WO4, Ag/β-Ag2WO4和Ag/γ-Ag2WO4而言,最佳催化剂为Ag/β-Ag2WO4,其实际最佳Ag:Ag2WO4摩尔比为4:96,该催化剂还原CO2为CH4的QY、EROEI、TON和拟一级反应速率常数分别为0.145%、0.067%、9.61和1.96×10-6 min-1.此外,制备的等离子共振Ag/Ag2WO4光催化剂在可见光辐照下进行循环反应仍能保持稳定性.局域表面等离子共振效应是强化Ag/Ag2WO4光催化剂活性和稳定性的主要原因.  相似文献   

11.
甲酸是一种重要的化工原料,以可再生生物质为原料,通过催化氧气氧化制备甲酸具有重要意义。对于不溶于水的生物质原料的转化,采用可溶于水的均相催化剂体系证明是有效的。本文总结了均相催化剂体系(包括含钒杂多酸、含钒杂多酸+H2SO4、含钒杂多酸基离子液体、NaVO3+H2SO4、VOSO4、NaVO3-FeCl3+H2SO4、FeCl3+H2SO4等)在催化氧气氧化生物质(包括生物质模型化合物、纤维素、木材、秸秆和玉米芯等)制备甲酸方面的研究,分析了其转化的过程和机理。最后,指出了目前催化氧化生物质制备甲酸存在的问题和挑战。  相似文献   

12.
采用水热法制备了CeO2-ZrO2-WO3(CZW)催化剂,考察了WO3含量对CZW催化剂上NH3选择性催化还原NOx性能的影响,并利用X射线衍射、N2吸附-脱附、H2程序升温还原、NH3和NO程序升温脱附等方法对其进行了表征。结果表明,WO3以无定形的形式存在于催化剂中,添加WO3后显著提高了催化剂的表面酸性,并且在CZW催化剂上出现了强吸附的NO物种,从而有利于提高催化剂的活性。另外,适量的WO3引入将增大催化剂的比表面积,促进催化剂的氧化还原性能,这将有利于提高SCR的催化活性。和CeO2-ZrO2催化剂相比,当WO3的含量为20%时,CZW催化剂表现出良好的抗硫性能。此外,当空速为60 000 h-1时,在200~463 ℃,该催化剂显示出了大于90% NOx转化率。  相似文献   

13.
Rh/NaY催化剂上合成气选择一步生成乙酸   总被引:1,自引:0,他引:1  
在合成气(CO+H2)催化转化反应中,含适当助剂(如Mn、Fe、V等)的负载型Rh催化剂能够有选择地催化生成C2含氧化合物,某些氧化物载体本身也会成为Rh催化剂的助剂[1~3].  相似文献   

14.
采用共浸渍薄水铝石(AlOOH)方法制备了一系列Ni/MgO/Al2O3催化剂, 并采用N2气吸附及X射线衍射等手段进行了表征. 选择1-甲基萘作为焦油模型化合物, 研究了该催化剂催化转化具有较低水蒸气/碳摩尔比(nH2O/nC) 的高温焦炉煤气(COG)中焦油催化反应性能. 考察了催化剂中MgO含量及反应条件等对催化剂性能的影响. 实验结果表明, 在775 ℃和nH2O/nC=0.7条件下, MgO改性的Ni/MgO/Al2O3催化剂对1-甲基萘催化转化为小分子气体反应具有较好的催化活性和稳定性; 热重分析表明, MgO的加入能显著提高催化剂的抗积炭能力. 在Ni/MgO/Al2O3催化剂上, 反应气中高浓度H2S气体(0.25%, 体积分数)能够促进焦油催化转化为小分子气体, 这可能是由于H2S在Ni表面的可逆吸附形成更适合于重整反应的活性位, 同时抑制了烷烃裂解吸附形成的碳在金属中的溶解、扩散并最终形成积炭过程.  相似文献   

15.
纤维素直接催化转化制乙二醇是一条极具吸引力的生物质转化途径,有助于减轻化石能源资源的消耗。综述了从该反应途径的发现到获得高效、高稳定性催化剂的快速发展过程。基于对钨基催化剂的大量研究结果,本文讨论了反应机制,明确了反应路径、催化剂状态、钨物种及加氢催化活性中心各自在串联反应中的作用。围绕该反应过程的工业化应用需要,讨论了有关原生木质纤维素生物质催化转化以及高效反应过程的发展策略。在此基础上,将纤维素催化转化制乙二醇过程与生物质发酵制丙酮-丁醇-乙醇的生物炼制路线进行整合,构建出一个理想的反应过程潜在应用范例。最后,对纤维素催化转化制乙二醇反应过程进行了总结和前景展望.  相似文献   

16.
化石燃料的广泛使用导致大气中CO2的排放量急剧增加,进而引起全球变暖和海洋酸化等一系列问题.CO加氢(费托合成)反应是利用非石油来源的原料生产液体燃料和化学品的一种重要途径.同时,利用可再生的H2将CO2转化为高附加值的产品有利于减少对化石燃料的依赖,减轻由于大气中CO2浓度过高带来的负面影响.开发新型、高效、稳定的催化剂是费托合成和CO2加氢制高附加值烃的关键因素之一.Fe基、Co基和Ru基催化剂是费托合成中常用的催化剂.而在CO2加氢反应中,Co基和Ru基催化剂上主要发生甲烷化反应,几乎没有长链烃生成.Fe基催化剂在费托合成和CO2加氢反应中均表现出优异的催化生成长链烃性能.同时,Fe储量丰富和价格便宜的特点也促进Fe基催化剂在两个反应中的广泛应用.一般认为,在Fe基催化剂上CO2通过逆水煤气变换反应生成CO,CO通过费托合成反应继续加氢生成烃类.因此,CO2加氢反应和费托合成反应有相似之处,同时也有较大的区别.本文从活性相、助剂和载体的角度综述了各组分在Fe基催化剂催化CO/CO2加氢反应中的作用,总结了其中的区别与联系.催化剂在反应中会发生复杂的相变过程,形成多种铁物种;其中,碳化铁(χ-Fe5C2,ε-Fe2C,Fe7C3和θ-Fe3C)在费托合成反应中是C-C偶联的活性相,但对于θ-Fe3C现还存在一些争议.在CO2加氢反应中Fe3O4催化逆水煤气变换反应,碳化铁催化CO加氢反应.金属助剂对CO/CO2加氢反应的促进作用较为相似,在两个反应中碱金属的促进作用最为明显.费托合成反应对载体有较强的适应性,而CO2加氢反应对载体敏感性较强,Al2O3,ZrO2和碳材料载体效果较好.本文还总结了近些年来基于对活性相、助剂和载体的深入理解设计制备的一些新型催化剂及其在费托合成和CO2加氢反应中的应用,包括具有新颖结构的催化剂、金属-有机骨架衍生催化剂以及与沸石分子筛结合的双功能催化剂.最后,还分析了目前Fe基催化剂在费托合成和CO2加氢反应应用中所面临的问题和挑战,并对未来的发展趋势进行了展望.  相似文献   

17.
化石燃料的广泛使用导致大气中CO2的排放量急剧增加,进而引起全球变暖和海洋酸化等一系列问题.CO加氢(费托合成)反应是利用非石油来源的原料生产液体燃料和化学品的一种重要途径.同时,利用可再生的H2将CO2转化为高附加值的产品有利于减少对化石燃料的依赖,减轻由于大气中CO2浓度过高带来的负面影响.开发新型、高效、稳定的催化剂是费托合成和CO2加氢制高附加值烃的关键因素之一.Fe基、Co基和Ru基催化剂是费托合成中常用的催化剂.而在CO2加氢反应中,Co基和Ru基催化剂上主要发生甲烷化反应,几乎没有长链烃生成.Fe基催化剂在费托合成和CO2加氢反应中均表现出优异的催化生成长链烃性能.同时,Fe储量丰富和价格便宜的特点也促进Fe基催化剂在两个反应中的广泛应用.一般认为,在Fe基催化剂上CO2通过逆水煤气变换反应生成CO,CO通过费托合成反应继续加氢生成烃类.因此,CO2加氢反应和费托合成反应有相似之处,同时也有较大的区别.本文从活性相、助剂和载体的角度综述了各组分在Fe基催化剂催化CO/CO2加氢反应中的作用,总结了其中的区别与联系.催化剂在反应中会发生复杂的相变过程,形成多种铁物种;其中,碳化铁(χ-Fe5C2,ε-Fe2C,Fe7C3和θ-Fe3C)在费托合成反应中是C-C偶联的活性相,但对于θ-Fe3C现还存在一些争议.在CO2加氢反应中Fe3O4催化逆水煤气变换反应,碳化铁催化CO加氢反应.金属助剂对CO/CO2加氢反应的促进作用较为相似,在两个反应中碱金属的促进作用最为明显.费托合成反应对载体有较强的适应性,而CO2加氢反应对载体敏感性较强,Al2O3,ZrO2和碳材料载体效果较好.本文还总结了近些年来基于对活性相、助剂和载体的深入理解设计制备的一些新型催化剂及其在费托合成和CO2加氢反应中的应用,包括具有新颖结构的催化剂、金属-有机骨架衍生催化剂以及与沸石分子筛结合的双功能催化剂.最后,还分析了目前Fe基催化剂在费托合成和CO2加氢反应应用中所面临的问题和挑战,并对未来的发展趋势进行了展望.  相似文献   

18.
采用微波加热和高温碳化技术, 以ZIF-8为前驱体, 在甲醇-水双溶剂体系中先后引入Fe(NO3)3·9H2O和KSCN, 制备了一系列S掺杂的Fe-N-C催化剂(Fe3C/Fe-SAS@SNC), 并通过X射线粉末衍射、 扫描透射电子显微镜和氮气吸附-脱附测试等表征手段进行分析. 结果表明, Fe和S两种元素的合理掺杂使Fe3C/Fe-SAS@SNC催化剂具有明显的分级多孔结构, 比表面积达到673 m2/g, 在酸、 碱电解质中均表现出了优异的氧还原催化性能. 在0.1 mol/L KOH中, Fe3C/Fe-SAS@SNC催化剂的半波电位达到0.880 V(vs. RHE), 高于商业Pt/C催化剂, 且表现出了比商业Pt/C更优的稳定性. 在0.5 mol/L H2SO4中, Fe3C/Fe-SAS@SNC电催化氧还原的性能也与商业Pt/C催化剂相当.  相似文献   

19.
朱庆俊  俞建长  黄清明  张新奇 《化学学报》2011,69(24):2955-2958
以介孔二氧化硅(SBA-15)为硬模板, 钨酸钠(Na2WO4•2H2O)为钨源, 在酸性条件下, 用改进的浸渍-还原法合成了具有纳米坑结构的单晶片状WO3材料. 用X射线衍射(XRD)、能量扩散X射线(EDX)、扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)和紫外-可见光区透射光谱(UV-Vis)等手段对产物的组成、形貌和光学性能进行了表征. 结果表明, 获得的产物为带有纳米坑结构的单晶片状WO3, 且在近紫外-可见光区具有较高的透射率. 此外, 随着煅烧温度的升高, WO3由单斜相转变为单斜相与正交相的混合相, WO3薄膜的紫外-可见光透射率随煅烧温度升高而升高.  相似文献   

20.
以氯化钨为前驱体,通过溶剂热法制备了WO3和W18O49并将其应用在染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)和电解水析氢反应(hydrogen evolution reaction,HER)中。通过X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)对WO3和W18O49的结构和形貌进行表征。结果表明:WO3和W18O49均为单斜相,其形貌表现为定向排列的纳米棒组成的团簇。X射线光电子能谱(XPS)和电子顺磁共振(EPR)表明W18O49中含有丰富的氧空位。基于氧空位优异的电化学特性,W18O49对电极组装的DSSC获得了7.41%的光电能量转换效率(power conversion efficiency,PCE),高于WO  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号