首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 159 毫秒
1.
Microstructural parameter evaluation of reservoir rocks is of great importance to petroleum production companies. In this connection, X-ray computed microtomography (μ-CT) has proven to be a quite useful method for the assessment of rocks, as it provides important microstructural parameters, such as porosity, permeability, pore size distribution and porous phase of the sample. X-ray computed microtomography is a non-destructive technique that enables the reuse of samples already measured and also yields 2-D cross-sectional images of the sample as well as volume rendering. This technique offers an additional advantage, as it does not require sample preparation, of reducing the measurement time, which is approximately one to three hours, depending on the spatial resolution used. Although this technique is extensively used, accuracy verification of measurements is hard to obtain because the existing calibrated samples (phantoms) have large volumes and are assessed in medical CT scanners with millimeter spatial resolution. Accordingly, this study aims to determine the accuracy of an X-ray computed microtomography system using a Skyscan 1172 X-ray microtomograph. To accomplish this investigation, it was used a nylon thread set with known appropriate diameter inserted into a glass tube. The results for porosity size and phase distribution by X-ray microtomography were very close to the geometrically calculated values. The geometrically calculated porosity and the porosity determined by the methodology using the μ-CT was 33.4 ± 3.4% and 31.0 ± 0.3%, respectively. The outcome of this investigation was excellent. It was also observed a small variability in the results along all 401 sections of the analyzed image. Minimum and maximum porosity values between the cross sections were 30.9% and 31.1%, respectively. A 3-D image representing the actual structure of the sample was also rendered from the 2-D images.  相似文献   

2.
Several daily activities involve the accumulation or percolation of fluids through porous media. X-ray microtomography is a non-invasive technique capable of providing images of the internal microstructure of materials showing the different phases of fluid distribution present in the sample directly or at the pore-scale. This methodology was used to qualitatively and quantitatively assess samples consisting with glass beads of standard size, which contained fluid filling a porous region. Three samples were prepared with 0.6 mm or 0.8 mm diameter glass beads inserted into a glass tube with an inner diameter of 6.7 mm and 1.0 mm wall thickness. The fluids injected were dopant salt–water solution, industrial oil and commercial oil. The samples were scanned using a Skyscan-1172 microtomographic system. All phases present in the sample were differentiated. The values of injected fluids were determined through 2D and 3D analyses. Two types of solutions were used, one doped with KI, and the other with BaCl2·2H2O. The percentage of KI used allowed the individualization of the solution and, therefore, the direct quantification of this phase through 2D and 3D images.  相似文献   

3.
The transition metal-doped spinel cathode materials, LiM0.5Mn1.5O4 (M=Ni. Co, Cr) were prepared by solid-state reaction. The structure and morphology of the samples were investigated by X-ray diffraction, Rietveld refinement and scanning electron microscopy (SEM). The diffraction peaks of all the samples corresponded to a single phase of cubic spinel structure with a space group Fd3m. Field-emission SEM shows octahedron like shapes and the primary particles size was between 500 nm and 2 μm. Oxidation states of Ni, Co and Cr were found to be 2+, 2+ and 3+ as revealed by X-ray photoelectron spectroscopy. During discharging, LiNi0.5Mn1.5O4 and LiCo0.5Mn1.5O4 sample shows more than 130 mAh/g between 3.5 and 5.2 V at a current density of 0.65 mA/cm2 and well developed plateau around 5 V, respectively.  相似文献   

4.
Microtomography, as a non-destructive technique, has become an important tool in studies of internal properties of materials. Recently, interest using this methodology in characterizing the samples with respect to their compositions, especially rocks, has grown. Two physical properties, density and effective atomic number, are important in determining the composition of rocks. In this work, six samples of materials with densities that varied from 2.42 to 6.84 g/cm3 and effective atomic numbers from 15.0 to 77.3 were studied. The measurements were made using a SkyScan-Bruker 1172 microtomography apparatus operating in voltages at 50, 60, 70, 80, 90 and 100 kV with a resolution of 13.1 μm. Through micro-CT images, an average gray scale was calculated for the samples and correlation studies of this value with the density and the effective atomic number of samples were made. Linear fits were obtained for each energy value. The obtained functions were tested with samples of Amazonite, Gabbro, Sandstone and Sodalite.  相似文献   

5.
The ultrasonic fractionation of milk fat in whole milk to fractions with distinct particle size distributions was demonstrated using a stage-based ultrasound-enhanced gravity separation protocol. Firstly, a single stage ultrasound gravity separation was characterised after various sonication durations (5–20 min) with a mass balance, where defined volume partitions were removed across the height of the separation vessel to determine the fat content and size distribution of fat droplets. Subsequent trials using ultrasound-enhanced gravity separation were carried out in three consecutive stages. Each stage consisted of 5 min sonication, with single and dual transducer configurations at 1 MHz and 2 MHz, followed by aliquot collection for particle size characterisation of the formed layers located at the bottom and top of the vessel. After each sonication stage, gentle removal of the separated fat layer located at the top was performed.Results indicated that ultrasound promoted the formation of a gradient of vertically increasing fat concentration and particle size across the height of the separation vessel, which became more pronounced with extended sonication time. Ultrasound-enhanced fractionation provided fat enriched fractions located at the top of the vessel of up to 13 ± 1% (w/v) with larger globules present in the particle size distributions. In contrast, semi-skim milk fractions located at the bottom of the vessel as low as 1.2 ± 0.01% (w/v) could be produced, containing proportionally smaller sized fat globules. Particle size differentiation was enhanced at higher ultrasound energy input (up to 347 W/L). In particular, dual transducer after three-stage operation at maximum energy input provided highest mean particle size differentiation with up to 0.9 μm reduction in the semi-skim fractions. Higher frequency ultrasound at 2 MHz was more effective in manipulating smaller sized fat globules retained in the later stages of skimming than 1 MHz. While 2 MHz ultrasound removed 59 ± 2% of the fat contained in the initial sample, only 47 ± 2% was removed with 1 MHz after 3 ultrasound-assisted fractionation stages.  相似文献   

6.
Atomic scale images and low energy electron diffraction pattern of a MoO2(100) single crystal surface are presented, which show different structural modifications depending on surface preparation. A short in-situ heat treatment of the as-grown single crystal results in an atomically ordered surface whose diffraction pattern and STM images are consistent with those expected from the bulk structure. The symmetry of the STM images suggests an oxygen termination of the surface. A significantly longer heat treatment causes a thermodynamically stable (4 × 1) reconstruction which is interpreted to be due to a loss of oxygen chains. The (4 × 1) reconstruction vanishes after Ar-ion-sputtering and subsequent annealing. Additional long sputtering cycles result in a (2 × 1) reconstruction. The observed surface reconstructions can be transformed into each other by heating or sputtering cycles.  相似文献   

7.
Soft X-ray photoelectron spectroscopy (SXPS) and energy-scanned photoelectron diffraction (PhD) have been used to study the surface species produced by exposure of Ru(0001) to methanol at ~ 150 K. SXPS shows a single surface species is formed at sub-monolayer coverages with an O 1s peak binding energy of ~ 532.6 eV, 2.8 eV greater than that of chemisorbed atomic oxygen. O 1s PhD data from this species shows no significant modulations, in contrast to simulated PhD spectra from a methoxy species occupying a three-fold coordinated hollow site, as predicted by earlier density functional theory calculations, or atop or bridging sites. By contrast, PhD data from the O 1s of the atomic oxygen species in the Ru(0001)(2 × 1)–O phase are consistent with the oxygen atoms occupying ‘hcp’ hollow sites (above second-layer Ru atoms) at a RuO bondlength of 2.01 ± 0.02 Å, essentially identical to previous structure determinations of this phase. O 1s PhD recorded at normal emission from adsorbed CO are also consistent with the known CO atop adsorption species. We conclude that the methanol-derived surface molecular species is not methoxy in a well-defined local site on the surface, but is consistent with clusters of intact methanol identified in a recent infrared spectroscopy investigation.  相似文献   

8.
Extreme ultra-violet (EUV) lasers, X-ray lasers and other backlighter sources can be used to probe high-energy density materials if their brightness can overcome self-emission from the material. We investigate the maximum plasma thickness of aluminum, silicon and iron that can be probed with EUV or X-ray photons of energy 89–1243 eV before self-emission from the plasma overwhelms the backlighter output. For a uniform plasma, backlighter transmission decreases exponentially with increasing thickness of the material following Beer's law at a rate dependent on the plasma opacity. We evaluate the plasma opacity with the Los Alamos TOPS opacity data. The self-emission is assumed to be either that of a black body to arise from a plasma in LTE or to only consist of free–free and free–bound emission. It is shown that at higher plasma temperature (?40 eV), EUV radiation (e.g. photon energy=89 eV) can probe a greater thickness of plasma than X-ray radiation (e.g. photon energy=1243 eV).  相似文献   

9.
Thermal stability of iron nitrides prepared by mixing laser and plasma beam nitriding (LPN) technology was studied. The treated samples were annealed in vacuum at different temperature from 473 K to 1273 K. The phases were detected by X-ray diffraction (XRD), the nitride’s contents were calculated from the patterns of XRD, and the microstructures were analyzed by scanning electron microscope (SEM). Three critical temperatures (473 K, 673 K, and 1273 K) are found. Due to deeper nitriding layer in the LPN sample, the nitrides is more stable than that in laser-produced sample at the annealing temperature higher than 973 K. It is important and central for some potential industrial productions and applications.  相似文献   

10.
We fabricated a heavily Bi-doped (xBi  2 × 1019 cm−3) PbTe p–n homojunction diode that detects mid-infrared wavelengths by the temperature difference method (TDM) under controlled vapor pressure (CVP) liquid phase epitaxy (LPE). The photocurrent density produced by the heavily Bi-doped diode sample is approximately 20 times and 3 times greater than that produced by an undoped and heavily In-doped sample, respectively. By varying the ambient temperature from 15 K to 225 K, the detectable wavelength is tunable from 6.18 μm to 4.20 μm. The peak shift of the detectable wavelength is shorter in the heavily Bi-doped sample than in the undoped sample, consistent with our previously proposed model, in which Bi–Bi nearest donor–acceptor pairs are formed in the heavily Bi-doped PbTe liquid phase epitaxial layer. Current–voltage (IV) measurements of the heavily Bi-doped diode sample under infrared exposure at 77 K indicated a likely leak in the dark current, arising from the deeper levels. From the dark IV measurements, the activation energy of the deep level was estimated as 0.067 eV, close to the energy of the deep Tl-doped PbTe acceptor layer. We conclude that the deep level originates from the Tl-doped p-type epitaxial layer.  相似文献   

11.
Ultrafast pulsed laser ablation has been investigated as a technique to machine CdWO4 single crystal scintillator and segment it into small blocks with the aim of fabricating a 2D high energy X-ray imaging array. Cadmium tungstate (CdWO4) is a brittle transparent scintillator used for the detection of high energy X-rays and γ-rays. A 6 W Yb:KGW Pharos-SP pulsed laser of wavelength 1028 nm was used with a tuneable pulse duration of 10 ps to 190 fs, repetition rate of up to 600 kHz and pulse energies of up to 1 mJ was employed. The effect of varying the pulse duration, pulse energy, pulse overlap and scan pattern on the laser induced damage to the crystals was investigated. A pulse duration of ≥500 fs was found to induce substantial cracking in the material. The laser induced damage was minimised using the following operating parameters: a pulse duration of 190 fs, fluence of 15.3 J cm−2 and employing a serpentine scan pattern with a normalised pulse overlap of 0.8. The surface of the ablated surfaces was studied using scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy and X-ray photoelectron spectroscopy. Ablation products were found to contain cadmium tungstate together with different cadmium and tungsten oxides. These laser ablation products could be removed using an ammonium hydroxide treatment.  相似文献   

12.
An in situ study was designed to investigate naturally developed demineralisation in human enamel in a widely non-destructive manner in combination with X-ray microtomography. Samples of human enamel were carried in the oral cavity of participants for 24 h daily for either 21 or 29 days using so-called intraoral mandibular appliances (ICTs). Demineralisation was thereby generated in a natural way without causing caries in the subjects’ dentition. By employing synchrotron-based X-ray microtomography (XMT) in combination with volume image analysis, a quantification and three-dimensional visualisation of different stages of mineral density loss was possible. Basic features of the demineralised samples were similar to those reported in earlier in vitro studies. However, the analysed samples showed significant differences in the morphology of surface attack and the degree of mineral density loss depending on the carrier, the exposure time and the position within the ICT. In particular, the varying local conditions within a carrier's oral cavity seem to be different than in an in vitro study. Our results show that the combination of ICTs and quantitative image analysis applied to XMT data provides an analytical tool which is highly suited for the fundamental investigation of naturally developed demineralisation processes.  相似文献   

13.
InAsSbP quantum dots (QDs) and nano-pits (NPs) are grown on a InAs(100) surface by liquid phase epitaxy (LPE). Their morphology, dimensions and distribution density are investigated by high resolution scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and total energy calculations. QDs average density ranges from 5 to 7 × 109 cm?2, with heights and widths having a Gaussian distribution with sizes from 5 nm to 15 nm and 10 nm to 40 nm respectively. The average pits density is (2–6) × 1010 cm?2 with dimensions ranging from 5–30 nm in width and depth. We also find a shift in the absorption edge towards the longer wavelengths together with broadening towards shorter wavelengths indicating that these QDs and lateral overgrown nano-pits are grown at the n-InAs/p-InAsSbP heterojunction interface. Together with total energy calculations, the results indicate that lattice mismatch ratio plays a central role in the growth of these strain-induced nano-objects.  相似文献   

14.
The geometry of hexafluorotribenzo[a,g,m]coronene with n-carbon alkyl chains [FTBC-Cn (n = 4, 6, 8, 12)] and their supramolecule self-assembly on a highly oriented pyrolytic graphite (HOPG) surface has been optimized by molecular dynamics simulations using COMPASS force field at 0 K, 298 K, 333 K and 353 K. Electronic properties and intermolecular interactions in graphene supramolecule assembly have been studied by the first principle methods based on the density functional theory (DFT). It is indicated that the thermal stability and electronic properties of graphene molecules can be tunable by attaching alkyl chains to a triangular graphene sheet, and changing the length of the alkyl chain, and self-assembling on a certain substrate. The main results are as follows. The geometry and energy gap of the FTBC-Cn single molecule and their supramolecule self-assembly on HOPG are both stable with the changes of the temperature from 0 K to 353 K and the number of carbon atoms on the alkyl chain. The simulation results of geometry, energy gap as well as STM images of graphene supramolecule assembly are in good agreement with the corresponding experimental results in room temperature. Furthermore, the electronic properties of graphene supramolecule assembly at the temperatures of 0 K, 333 K and 353 K are also predicted. When a triangular graphene molecule attached with six alkyl chains, the energy gaps are increased and stabilized at the temperature from 0 K to 353 K. After FTBC-Cn molecule self-assembly on a HOPG substrate, the energy gap is reduced but still stable.  相似文献   

15.
Rough and porous Al2O3 coatings containing Ca and P were prepared on Ti–50.8 at.% Ni alloy by micro-arc oxidation (MAO) technique. The microstructure, elemental and phase composition of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS) and thin-film X-ray diffraction (TF-XRD). The thickness of the coatings was measured by eddy current coating thickness gauge. The corrosion resistance and the nickel release of the coated and uncoated samples were examined by potentiodynamic polarization tests and immersion tests in Hank’s solution, respectively. The results show that the coatings are mainly composed of γ-Al2O3 crystal phase. The Ni content of the coatings is about 3.5 at.%, which is greatly lower than that of NiTi substrate. With increasing treatment time, both thickness and roughness of the coatings increase. The corrosion resistance of the coated samples is about two orders of magnitude higher than that of the uncoated NiTi alloy. The concentration of Ni released from coated NiTi samples is much lower than that of uncoated NiTi sample. It can be reduced in the factor of one-seventh compared with the uncoated NiTi sample after 3 weeks immersion in Hank’s solution.  相似文献   

16.
Copper tungstate (CuWO4) crystals were synthesized by the sonochemistry (SC) method, and then, heat treated in a conventional furnace at different temperatures for 1 h. The structural evolution, growth mechanism and photoluminescence (PL) properties of these crystals were thoroughly investigated. X-ray diffraction patterns, micro-Raman spectra and Fourier transformed infrared spectra indicated that crystals heat treated and 100 °C and 200 °C have water molecules in their lattice (copper tungstate dihydrate (CuWO4·2H2O) with monoclinic structure), when the crystals are calcinated at 300 °C have the presence of two phase (CuWO4·2H2O and CuWO4), while the others heat treated at 400 °C and 500 °C have a single CuWO4 triclinic structure. Field emission scanning electron microscopy revealed a change in the morphological features of these crystals with the increase of the heat treatment temperature. Transmission electron microscopy (TEM), high resolution-TEM images and selected area electron diffraction were employed to examine the shape, size and structure of these crystals. Ultraviolet–Visible spectra evidenced a decrease of band gap values with the increase of the temperature, which were correlated with the reduction of intermediary energy levels within the band gap. The intense photoluminescence (PL) emission was detected for the sample heat treat at 300 °C for 1 h, which have a mixture of CuWO4·2H2O and CuWO4 phases. Therefore, there is a synergic effect between the intermediary energy levels arising from these two phases during the electronic transitions responsible for PL emissions.  相似文献   

17.
《Current Applied Physics》2010,10(3):880-885
In the present work the influence of annealing temperature on the structural and optical properties of the In2O3 films deposited by electron beam evaporation technique in the presence of oxygen was studied. The deposited films were annealed from 350 to 550 °C in air. The chemical compositions of In2O3 films were carried out by X-ray photoelectron spectroscopy (XPS). The film structure and surface morphologies were investigated as a function of annealing temperature by X-ray diffraction (XRD) and atomic force microscopy (AFM). The structural studies by XRD reveal that films exhibit preferential orientation along (2 2 2) plane. The refractive index (n), packing density and porosity (%) of films were arrived from transmittance spectral data obtained in the range 250–1000 nm by UV–vis-spectrometer. The optical band gap of In2O3 film was observed and found to be varying from 3.67 to 3.85 eV with the annealing temperature.  相似文献   

18.
During selective etching (dealloying) surface-sensitive X-ray diffraction employing Synchrotron light has been used to in-situ monitor the potential-controlled formation of Au-rich films on the surface of Cu3Au (111) in iodide-containing electrolytes. Similar to the case in pure sulfuric acid we observed a sequence of structural transformations starting from a well-prepared pristine surface to a porous film consisting of substrate-oriented Au ligaments. Also stacking-reversed ultrathin Au-rich films and Au islands form as intermediate steps but no passive-like behavior was observed in iodide-containing electrolytes, i.e. the surface quickly developed Au ligaments after reaching the Cu dissolution potential. At low overpotentials comparatively coarse Au islands point to a higher mobility of Au/electrolyte interfaces in iodide-containing solutions. At higher overpotentials and also with higher iodide concentrations an epitaxial Cu-iodide precipitate film showed an orientation relation of CuI (111) || CuAu (111) and two azimuthal domains of < ? 2, 2, 0 > || < ? 2, 2, 0 > and < ? 2, 2, 0 > || < 2, ? 2, 0>. This partially dissolution-inhibiting bulk CuI layer is observed to produce a bimodal pore size instead of usually obtained homogeneous porosity. The X-ray data and supporting ex-situ AFM and SEM images show marked differences in the morphology and connectivity of the forming nanoporous Au layer. Precipitation layers are thus suggested to provide means for controlling the nanoporosity for applications of dealloyed films and surfaces.  相似文献   

19.
Good quality and bulk size single crystal (size: 20×13×8 mm3) of bis(glycine) lithium nitrate (BGLiN) was grown by a slow evaporation solution technique from the aqueous solutions at constant temperature i.e. 27 °C using synthesized materials. Crystal system and lattice parameters were determined by single crystals as well as powder X-ray diffraction analysis. The lattice parameters of the titled compound are a=10.0223 Å, b=5.0343 Å, c=17.0510 Å, and V=860.312 Å3 and it crystallized in an orthorhombic system with space group Pca21 obtained by single crystal XRD. Elemental composition was confirmed by energy dispersive X-ray spectroscopic analysis. Optical absorption spectrum was recorded and various optical parameters such as optical transmission (~60%), and optical band gap (4.998 eV) were calculated. Photoluminescence study shows that the grown crystal is free from major defects. Crystalline perfection of the grown crystal was assessed and found good. Ground state optimized geometry has been obtained by using DFT with 6-31G(d,p) basis set. HOMO and LUMO energy gap was found to be 6.01 eV and dipole moment was 1.65 D.  相似文献   

20.
The high transparency of carbon-containing materials in the spectral region of “carbon window” (λ  4.5–5 nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5 nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd–glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号