首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
氨是重要的化工产品之一,广泛应用于化肥和燃料生产等领域.目前我国仍采用传统的Haber-Bosch工艺合成氨,该工艺消耗大量的化石燃料并造成环境污染.因此,开发一种高效、环保的氨合成方法代替Haber-Bosch工艺,减少能源消耗和保护环境具有非常重要的意义.电化学氮还原(eNRR)工艺由于使用可再生能源,成为有前景的替代方法之一.但目前eNRR工艺面临着许多挑战:较大的过电位以及析氢反应都会导致氨合成反应性能不理想.因此,理性设计电催化剂以提高氨合成效率成为当务之急.本文总结了近年e NRR领域的最新进展,以期为开发高性能催化剂提供借鉴.本文从eNRR的反应机理入手,介绍了eNRR的检测方法和反应条件,总结了近年来电催化剂的设计策略、原位表征方法和理论计算的研究成果,并对领域未来发展进行展望.首先,从理论热力学和NH3检测等方面讨论了eNRR的关键难点.然后,从形态、结构、空位、掺杂、协同效应、异质结构和单原子等多方面总结了eNRR催化剂的设计策略.此外,介绍了原位拉曼、原位红外、原位电化学质谱和原位X射线吸收光谱等技术在电催化氮还原机理研究中的重要作用.讨论了密度泛函理论(DFT)...  相似文献   

2.
氨是一种重要的化工产品和非碳基能源载体,全球年产量已达2亿吨.目前,氨的工业化生产主要依赖Haber-Bosch工艺,其能耗高且污染严重.因此亟需开发一种低碳环保的替代工艺以实现氨合成工业的可持续发展.现阶段主要有三种比较有发展潜力的新型氨合成工艺,即电催化、光催化和光电化学氮还原产氨技术.这些氮还原技术都可在温和环境条件下合成氨,具有能耗低、零排放等优势,被认为是替代Haber-Bosch工艺的有效途径,受到广泛关注.其中,与前两者相比,光电化学氮还原具有明显优势:与电催化氮还原相比,光电化学氮还原能够实现从太阳能到化学能的直接转化,具有较高的能量转化效率;而与光催化氮还原相比,光电化学氮还原系统中的外加偏压能够加速激子分离,有效提高太阳能到化学能的转化效率.在光电化学氮还原过程中,其核心组件光电阴极材料的性能决定了反应的氨产量、选择性和稳定性.本文总结了近年来光电化学氮还原领域的最新进展,特别是其中涉及的光阴极材料.首先,详细介绍了光电化学氮还原所涉及的基本原理和面临的主要瓶颈.其次,逐一总结了已报道的用于光电化学氮还原的光电阴极材料,包括氧化物(氧化铜、氧化亚铜、碘氧化铋、溴化氧...  相似文献   

3.
氮掺杂碳通常被用作铂基催化剂电催化氧还原反应的功能载体,但是,掺杂的氮对分子氧在铂活性中心上的吸附和还原机理尚不清楚。本研究采用氨气热解的方法制取氮掺杂纳米碳作为载体,并采用调节氨气热解温度进而控制不同种类氮掺杂的含量,可以使铂催化剂获得较高的零价铂含量、较大的电化学活性面积、合适的铂粒径(2.10 nm)和电子快速传输能力从而提高电催化活性。研究发现,具有最佳氮含量掺杂的Pt/Nano-NC-800催化剂显示出优异的电催化氧还原性能(例如,半波电位为0.80 V vs RHE,极限扩散电流为5.37 mA/cm2),以及强的抗甲醇和一氧化碳中毒能力。该性能优于商业铂碳催化剂(20%,JM)以及大多数沉积在碳纳米颗粒或其他载体上的铂催化剂,表现出优异的应用潜力。  相似文献   

4.
NH3 plays an important role in modern society as an essential building block in the manufacture of fertilizers, aqueous ammonia, plastics, explosives, and dyes. Additionally, it is regarded as a green alternative fuel, owing to its carbon-free nature, large hydrogen capacity, high energy density, and easy transportation. The Haber-Bosch process plays a dominant role in global NH3 synthesis; however, it involves high pressure and temperature and employs N2 and H2 as feeding gases, thus suffering from high energy consumption and substantial CO2 emission. As a promising alternative to the Haber-Bosch process, electrochemical N2 reduction enables sustainable and environmentally benign NH3 synthesis under ambient conditions. Moreover, its applied potential is compatible with intermittent solar, wind, and other renewable energies. However, efficient electrocatalysts are required to drive N2-to-NH3 conversion because of the extremely inert N≡N bond. To date, significant efforts have been made to explore high-performance catalysts with high efficiency and selectivity. Generally, noble-metal catalysts exhibit efficient performance for the NRR, but their scarcity and high cost limit their large-scale application. Therefore, considerable attention has been focused on earth-abundant transition-metal (TM) catalysts that can use empty or unoccupied orbitals to accept the lone-pair electrons of N2, while donating the abundant d-orbital electrons to the antibonding orbitals of N2. However, these catalysts may release metal ions, leading to environmental pollution. Most of these TM electrocatalysts may also favor the formation of TM—H bonds, facilitating the hydrogen evolution reaction (HER) during the electrocatalytic reaction. Recent years have seen a surge in the exploration of metal-free catalysts (MFCs). MFCs mainly include carbon-based catalysts (CBCs) and some boron-based and phosphorus-based catalysts. Generally, CBCs exhibit a porous structure and high surface area, which are favorable for exposing more active sites and providing rich accessible channels for mass/electron transfer. Moreover, the Lewis acid sites of most metal-free compounds could accept the lone-pair electron of N2 and adsorb N2 molecules by forming nonmetal—N bonds, further widening their potential for electrocatalytic NRR. Compared with metal-based catalysts, the occupied orbitals of metal-free catalysts can only form covalent bonds or conjugated π bonds, hindering electron donation from the electrocatalyst to N2 and molecular activation. In this review, we summarize the recent progress in the design and development of metal-free electrocatalysts (MFCs) for the ambient NRR, including carbon-based catalysts, boron-based catalysts, and phosphorus-based catalysts. In particular, heteroatom doping (N, O, S, B, P, F, and co-dopants), organic polymers, carbon nitride, and defect engineering are highlighted. We also discuss strategies to boost NRR performance and provide an outlook on the development perspectives of MFCs.  相似文献   

5.
在现代社会中氨是一种重要的工业原料,广泛应用于化工业、塑料制造,炸药以及染料等行业。由于氨气中不含碳,氢容量大、能量密度高且易于运输,已经被视为一种绿色能源替代品。Haber-Bosch方法在全球合成氨中起着主导作用,但其过程在高温高压条件下进行,且伴随着高能耗和CO2排放的问题。电催化氮还原反应(NRR)有望成为常规条件下低成本且环境无害的替代方法,且具有太阳能、风能和其他可再生能源相同的应用潜力。然而,由于惰性的N≡N键,它需要有效的电催化剂来驱动氮气-氨气的转化。迄今为止,人们一直在努力探索高性能催化剂,以实现高效率和选择性。通常,贵金属催化剂具有较高的NRR效率,但是稀缺性和高成本限制了它们的大规模应用。因此,人们将注意力集中在丰富的过渡金属(TM)催化剂上,该催化剂可以通过空的轨道接受氮气分子的孤对电子,同时提供丰富的d-轨道电子进入氮气的反键轨道。然而,这些催化剂可能释放金属离子,导致环境污染,并且大多数金属电催化剂也可能促进金属与氢成键,从而在电催化反应过程中促进了析氢反应(HER)。近年来,非金属催化剂已经成为一个研究热点。非金属催化剂主要包括碳基催化剂(CBC)以及一些硼基和磷基催化剂。通常,碳基催化剂具有多孔结构和较大的表面积,这有利于暴露更多的活性位点,并为质子和电子的传递提供了丰富的通道。本文总结了近期非金属电催化剂(MFCs)在电化学NRR中的设计和发展状况,包括碳基、硼基和磷基催化剂。此外,大多数非金属化合物的路易斯酸位也可以接受氮气的孤对电子并通过形成非金属和氮成键来吸附氮气分子,从而进一步扩大了它们在电催化NRR中的潜力。与金属基催化剂相比,非金属催化剂的占据轨道只能形成共价键或共轭π键,从而阻碍了电子从催化剂到氮气分子的转移以及分子的活化。我们重点讨论了掺杂型催化剂(N,O,S,B,P,F掺杂以及共掺杂)、有机聚合物、氮化碳及缺陷和表面修饰催化剂。最后,我们还讨论了提高NRR性能的方法,展望了非金属电催化剂的发展前景。  相似文献   

6.
张利利  蒋苏毓  马炜  周震 《催化学报》2022,43(6):1433-1443
随着世界人口的不断增长及人类生活质量的提高,人类对能源的需求逐步增加.这将加快化石燃料的枯竭,并导致环境和气候问题日益严峻.各国政府积极部署能源策略改革,逐步减弱各行业对煤炭等化石燃料的依赖.2020年,中国政府宣布将实施更加有效的政策和措施,并于2030年和2060年分别实现“碳达峰”和“碳中和”目标.开发金属-空气电池、质子交换膜燃料电池以及绿色电化学合成等储能与转换技术,是解决环境问题、保证清洁能源被高效可持续利用的重要手段之一.如何提高装置的储能与转换效率是商业化应用面临的挑战之一,而加快电极反应的动力学过程是解决这问题的根源.氧还原反应(ORR)作为可充电电池、原电池、电解池装置中的重要反应,其缓慢的动力学过程,限制了电池的能量密度和电合成效率.开发高效稳定的电催化剂可以应对这一挑战.然而,商用Pt/C催化剂却面临着储量有限、价格高、性能不能达到实际应用需求的问题;非Pt催化剂发展迅速,但其替代Pt基催化剂仍面临诸多问题和挑战.因此,更多的研究应聚焦于解决Pt基催化剂的瓶颈问题.近年来,关于提高低Pt催化剂的ORR性能研究取得了一定进展,分别采用不同的策略促进以H2...  相似文献   

7.
本研究将单原子分散的Fe-N4位点锚定在氮掺杂空心多孔碳球上用于电催化氧还原反应,研究表明,所制备的FeSAs/HNCSs-800催化剂表现出优异的电催化氧还原性能,其起始电位为0.925 V,半波电位为0.867 V。球差电镜和同步辐射X射线吸收光谱证实了催化剂中存在高度分散的Fe-N4单原子位点。通过密度泛函理论计算证明单原子Fe-N4位点是氧还原反应有效的活性位点,其相邻的C缺陷可以有效调控单原子Fe的电子结构,进而提高电催化氧还原性能。  相似文献   

8.
通过分析论证了有单质参加的化合反应或有单质生成的分解反应一定属于氧化还原反应这个教学结论的不确切性。明确指出,三碘化钾的生成与分解、金属羰基化合物的生成与分解都是有单质参加的化合反应或是有单质生成的分解反应,由于它们都是配位反应,在反应前后没有元素化合价变化,因此它们都不是氧化还原反应。  相似文献   

9.
氨是一种重要的化肥生产原料和清洁能源载体,在工业上主要通过哈伯法合成,但该工艺反应条件苛刻,需要高温高压并消耗大量的化石能源.因此,开发能耗低、反应温和的合成氨方法,对于缓解能源和环境的双重压力具有重要的现实意义.近年来,在温和条件下通过电催化氮还原反应(NRR)合成氨有望替代哈伯法,但该技术的重点在于设计合理的电催化...  相似文献   

10.
随着人们环保意识的不断增强,社会对清洁能源的需求也日益增加.燃料电池具有效率高,燃料来源丰富,可直接将化学能转化成电能且污染小等优点,因而受到了广泛关注.然而,燃料电池的阴极氧还原反应(ORR)速率较慢,成为提高燃料电池整体效率的制约因素.因此,开发高性能的ORR催化剂,加快ORR反应速率具有非常重要的意义.目前,Pt基催化剂被认为是活性最好的商用ORR电催化剂.尽管此类催化剂具有较高的催化活性和良好的稳定性,但Pt的储量有限,价格高昂,抗燃料毒化性能差,限制了其大规模应用.近年来,为了减小Pt的用量,降低催化剂成本,人们除了致力于研究贵金属合金催化剂及非贵金属催化剂外,还把目光聚焦在了非金属催化剂,特别是碳及其复合材料的研究上.在众多碳材料中,碳球因具有良好的表面渗透性和较高的机械稳定性而被广泛应用于催化、吸附、药物输送和能量存储及转化等领域中.然而,碳球的表面化学惰性较强,比表面积较低,使其部分应用受到了限制.因此,人们采用了多种方法来调控碳球的物理化学性质.其中,向碳材料中掺入杂原子,尤其是氮原子的方法广受青睐.因为杂原子的掺入会显著增强作为主体的碳原子给电子的能力和表面吸附性质,从而对ORR表现出优异的催化活性和稳定性.本文以蔗糖作为碳源,三聚氰胺作为氮源,采用水热法及高温热解法制备了一系列氮掺杂的生物质碳球.并对氮掺杂量及热解温度进行了优化.结果表明,石墨化程度及石墨氮含量的提高,能有效地提高催化剂的活性.在优化了的条件下得到的催化剂N0.1C1.9S-900,表现出了比商业Pt/C催化剂更好的ORR催化性能.在0.1 mol/L KOH中,该催化剂催化ORR的起始电位和半波电位分别为–22.6和–133.6 mV(vs.Ag/AgCl),极限电流密度为4.6 mA/cm~2,分别比商业Pt/C高出7.2 mV,5.9 mV和0.2 mA/cm~2.同时,在经过30000 s的稳定性测试中,N0.1C1.9S-900催化剂的电流损失也远低于Pt/C,表明该催化剂具有良好的稳定性.此外,在抗甲醇毒化实验中,相比于商业Pt/C,N0.1C1.9S-900催化剂对甲醇有更好的耐受性.另外,该催化剂催化的ORR属于高效的4e~–途径.可见,该催化剂作为燃料电池的阴极氧还原反应催化剂具有广阔的前景.  相似文献   

11.
电催化还原和氧化过程为合成高附加值化学品提供了高效、可持续的平台.特别是通过配对电解将阴极还原和阳极氧化过程耦合,可以有效降低反应过电位,并选择性地合成各种高价值化学品,近年来引起了越来越多的关注.总结了成对电解的最新研究进展,重点介绍了二氧化碳、含氮物质和水等无机小分子还原耦合替代氧化反应的研究.此外,还分析了成对电解所面临的主要挑战,并提出了可能的解决方案,有望对未来的相关研究提供一定的指导.  相似文献   

12.
以氧化石墨烯(GO)为原料、丙酮肟(DMKO)为还原剂和氮掺杂剂,采用化学还原法制备了不同氮掺杂含量的石墨烯(NG). 利用场发射透射电子显微镜(FETEM)、紫外-可见(UV-Vis)光谱、傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、zeta 电位和纳米粒度分析、循环伏安(CV)和旋转圆盘电极(RDE)等手段对材料的形貌、结构、成分和电化学性质进行表征. 结果显示:DMKO能有效地还原GO,且通过调节GO与DMKO的质量比,可以得到不同还原效果的NG,其氮含量范围为4.40%-5.89%(原子分数);GO与DMKO的质量比为1:0.7时制备的氮掺杂石墨烯(NG-1)在O2饱和0.1 mol·L-1 KOH溶液中对氧还原反应(ORR)的电催化性能最佳,其ORR峰电流为0.93 mA·cm-2,电子转移数为3.6,这归因于其较高含量的吡啶-N增加了材料的ORR活性位点. 此外,石墨化-N由于其较高的电子导电性倾向于产生较高的氧还原峰电流,而吡啶-N较低的超电势倾向于产生较正的氧还原峰电位. 与商用Pt/C相比,该材料展现出了优异的抗CH3OH“跨界效应”的特性.  相似文献   

13.
14.
以氧化石墨烯(GO)为原料、丙酮肟(DMKO)为还原剂和氮掺杂剂,采用化学还原法制备了不同氮掺杂含量的石墨烯(NG).利用场发射透射电子显微镜(FETEM)、紫外-可见(UV-Vis)光谱、傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、zeta电位和纳米粒度分析、循环伏安(CV)和旋转圆盘电极(RDE)等手段对材料的形貌、结构、成分和电化学性质进行表征.结果显示:DMKO能有效地还原GO,且通过调节GO与DMKO的质量比,可以得到不同还原效果的NG,其氮含量范围为4.40%-5.89%(原子分数);GO与DMKO的质量比为1:0.7时制备的氮掺杂石墨烯(NG-1)在O2饱和0.1 mol·L-1KOH溶液中对氧还原反应(ORR)的电催化性能最佳,其ORR峰电流为0.93 mA·cm-2,电子转移数为3.6,这归因于其较高含量的吡啶-N增加了材料的ORR活性位点.此外,石墨化-N由于其较高的电子导电性倾向于产生较高的氧还原峰电流,而吡啶-N较低的超电势倾向于产生较正的氧还原峰电位.与商用Pt/C相比,该材料展现出了优异的抗CH3OH\"跨界效应\"的特性.  相似文献   

15.
化石燃料的大量燃烧和利用造成日益严重的能源危机、全球气候变暖和环境污染,已成为人类面临的严峻挑战.因此,迫切需要开发可持续的能源存储和转换技术.其中,将二氧化碳(CO2)、氮气(N2)、硝酸盐(NO3-)和亚硝酸盐(NO2-)等广泛分布的小分子和环境污染物转化为高附加值的化学品和燃料受到了广泛关注.然而,工业合成方法通常需要高温高压等极为苛刻的条件并消耗大量的能量(如Haber-Bosch和Bosch-Meiser方法分别用于合成氨(NH3)和尿素),这加剧了能源危机和环境污染.因此,在常温常压下,由可再生的电能驱动的电化学催化小分子转化为高附加值化学品被认为是最有前途的能量储存和转化技术之一,它为缓解日益严重的环境问题和能源危机提供了契机.本文系统地总结了近年来在常温常压下电催化CO2与含氮小分子(N2,NH3,NO2-和NO3-)共还原合成高附加值的含氮肥料(如尿素)和化学品(如酰胺和胺等)的研究进展,尤其是缺陷化学和界面工程与催化活性/选择性之间的构效关系.首先,根据空间尺寸和来源介绍了缺陷的分类,阐述了界面和缺陷之间的内在联系,总结了掺杂、刻蚀、热处理等缺陷构建方法,以及电镜法和谱学法等缺陷表征手段.其次,系统地介绍了通过构建空位(尤其是氧空位)、异原子掺杂、设计单原子催化剂及双原子催化剂等缺陷设计策略来提升电催化碳-氮(C-N)偶联反应合成含氮有机物性能的最新研究进展,阐明了不同缺陷结构对催化剂电子结构和反应物/中间体吸附特征的调控作用.此外,归纳了构建金属/金属界面、金属/碳界面和金属间化合物(合金)等界面工程策略对电催化性能的调控.通过总结经典案例,重点强调了影响目标产物催化性能和选择性的关键因素和描述符.最后,针对目前电催化C-N偶联反应中存在的反应过程复杂、催化机理不明确、副反应严重、目标产物催化活性和选择性较低等挑战,对未来发展趋势提出了展望:(1)采用机器学习、分子模拟计算、密度泛函理论计算等预测并筛选高效的缺陷和界面工程的电催化剂,并对可能的活性位点和反应路径进行预测;(2)优化催化剂制备过程,实现催化剂中不同缺陷和界面的可控合成;(3)发展先进的原位表征技术监测电催化剂表面上的动态变化和识别反应过程中产生的中间体,结合理论计算对电催化C-N耦合反应的催化机理和反应路径进行深入地理解.综上所述,本文系统地总结了通过缺陷和界面工程调控催化剂结构并提高电催化C-N偶联反应合成含氮有机物的策略,并对该领域目前存在的挑战和未来的发展前景进行了展望,为促进电化学C-N偶联反应的工业化应用提供借鉴.  相似文献   

16.
氨是一种重要的能源物质,广泛地应用于人类的生产生活,但是目前生产氨的主要方法还是能源消耗量大,生产成本高的Haber-Bosch工艺,因此开发一种新型生产氨的工艺势在必行。电催化还原N2合成氨被认为是最有希望替代传统工艺的生产方法。本文通过理论计算,通过构建石墨烯基双原子催化剂M2/Gr(M=Mn,Fe,Co,Ni)研究了N2在其表面的吸附及还原特性。理论分析表明,N2在Fe2/Gr催化剂上还原为NH3的决速步能垒仅为0.69 eV,且氮还原反应(Nitrogen reduction reaction,NRR)的主要竞争反应析氢反应(Hydrogen evolution reactions,HER)的能垒为1.95 eV,证明Fe2/Gr是一种高效、有选择性的电催化合成氨催化剂。  相似文献   

17.
刘京  宋平  阮明波  徐维林 《催化学报》2016,(7):1119-1126
目前,开发高效的阴极氧还原反应(ORR)电催化剂是实现燃料电池和金属-空气电池商业化发展急需完成的目标。在过去的几十年中,人们在探索廉价高效的 ORR电催化剂(如 N掺杂的非金属及非铂电催化剂)领域做了广泛的研究。在 N掺杂的碳基 ORR催化剂中,已知的 N基活性位点主要分为四类,即吡啶类氮(P-N)、吡咯类氮(Py-N)、石墨化氮(G-N)和氧化类氮(O-N)。尽管人们对这四种类型氮的活性位点做了大量的研究,但是它们在催化反应中起到的 ORR催化作用以及催化机理和活性位点本身结构的关系仍不够明确。早期的研究中有人认为 P-N或者 Py-N是 ORR催化活性位点,也有人认为是 G-N起作用。最近也有研究表明, P-N和 G-N都是 ORR催化活性位点,只是在 ORR中所起的催化能力不同。因此,很有必要认清这些问题。
  本文通过 Hummer法酸性氧化一次和两次碳黑 Vulcan XC-72(VXC-72)以及随后高温热处理,制备了一系列 ORR催化剂 VXCO-1, VXCO-2, VXCO-1(900)和 VXCO-2(900),采用场发射扫描电子显微镜(SEM), N2吸附脱附法,元素分析仪(EA), X射线光电子能谱(XPS),拉曼光谱仪(Raman), X射线衍射能谱(XRD),电化学循环伏安法和线性伏安法测试等手段研究 Hummers法酸氧化和高温热处理对 VXC-72形貌组成的影响,以及这些碳基中成分和其催化 ORR能力的关系。
   SEM结果表明, Hummer法酸性氧化处理 VXC-72一次和两次后可以逐层剥落其最外边的碳层结构,最终得到表面光滑的类片层状结构的碳材料(VXCO-1和 VXCO-2)。这种表面光滑的类片层状结构的碳材料比表面积大于处理前的 VXC-72,而高温热处理之后的碳材料(VXCO-1(900)和 VXCO-2(900))由于类石墨层碎片结构蒸发损失暴露出更多内部的微孔和介孔结构使比表面积增加。 Raman和 XRD结果表明,氧化处理使碳材料的石墨化程度增加,而高温热处理则降低了其石墨化程度。
   EA和 XPS结果表明, Hummer法酸性氧化处理可以使在碳材料中掺入的 N以石墨化的为主,高温热处理却使得石墨化氮转变为吡啶类的氮。 ORR结果发现,活性的石墨化氮倾向于使 ORR反应经历两电子过程,从而生成 H2O2为主要产物;而吡啶类氮的活性位点更倾向于使 ORR反应经过四电子过程,主产物是水。该结果有助于新型碳基氧还原催化剂的设计和分析。  相似文献   

18.
N掺杂石墨烯作为一种具有较高活性和稳定性的氧还原反应(ORR)催化剂,受到人们的广泛关注。然而不同的N掺杂类型对氧还原活性的影响一直存在争议。本文通过密度泛函理论分别对石墨型和吡啶型两种N掺杂石墨烯的ORR活性进行比较研究。能带结构分析表明,石墨氮掺杂石墨烯(GNG)的导电性随掺N量的增加而降低;吡啶氮掺杂石墨烯(PNG)的导电性则随掺N量的增加先提高后降低。当N掺杂浓度达到4.2%(原子分数)时,PNG具有最优导电性。且当N掺杂浓度大于1.4%时,PNG的导电率总是高于GNG。氧还原自由能阶梯曲线发现O2的质子化是整个氧还原过程的潜在控制步骤。在同等氮掺杂浓度下,O2的质子化自由能能变在GNG上低于在PNG上,意味着若在同等电子传输能力的情况下,GNG具有比PNG更优异的催化活性。进一步分析发现:当N掺杂浓度在低于2.8%时,GNG和PNG导电性差异小,其催化ORR活性由O2质子化反应难易程度决定,GNG的催化活性优于PNG;当N掺杂浓度高于2.8%时,氮掺杂石墨烯的电子传输性能(导电性)成为决定催化剂ORR活性的主要因素,因此PNG表现出较GNG更高的活性。  相似文献   

19.
氮氧化物NO_x(NO和NO_2)对大气的污染日益严重,主要表现为形成酸雨、导致光化学烟雾和产生温室效应等,严重危害人类健康.氨气选择性催化还原(NH_3-SCR)NO_x是目前最有效的固定源NO_x消除技术.工业中常用的催化剂主要是V_2O_5-WO_3/TiO_2,但其活性组分V_2O_5有毒,且存在氧化能力较强和操作温度窗口过窄等缺点.开发新型环境友好的非钒基NH_3-SCR催化剂体系己成为NO_x催化净化领域的研究热点.CeO_2在稀土市场中占有很大比重且相对廉价,同时还具有优异的氧化-还原及储氧性能,因此开发Ce基SCR脱硝催化剂具有非常好的发展前景.对于NH_3-SCR反应,催化剂必须同时具有酸性位和氧化还原中心.酸性位有利于还原剂NH_3的吸附与活化,而氧化还原中心可以促使氧化剂和还原剂之间发生反应.对于低温SCR催化剂,表面酸性适中即可,氧化还原性能起决定作用;而对于中高温SCR催化剂,不仅要提高其表面酸性以保证足够的NH_3吸附量,同时还要控制其表面氧化性不宜太强,否则在高温段NH_3氧化,N_2选择性下降,NO转化率降低.CeO_2具有一定碱性以及优异的氧化还原性能,因此在高温阶段CeO_2催化剂上易发生NH_3深度氧化,高温NH_3-SCR活性差,温度窗口窄.为了拓宽CeO_2基催化剂的温度窗口,改善其催化性能,有必要调整CeO_2的氧化还原性能和酸碱性能.过渡金属磷酸盐或焦磷酸盐具有特殊的表面酸性和氧化还原性,被广泛应用于多种催化反应.考虑到过渡金属磷酸盐或焦磷酸盐表面同时具有酸性位和氧化还原中心,因而可用于NH_3-SCR反应.最近本课题组通过水热法制备了一种环境友好的Ce-P-O催化剂,该催化剂在较宽的温度范围(300-550℃)内表现出较高的催化NO转化能力,同时具有较强的抗碱和耐硫能力,显示出很好的应用前景.此外,硫酸盐和镍盐修饰能有效改善铈锆固溶体催化剂的NH_3-SCR性能:镍修饰增强了铈锆固溶体的Lewis酸性,有利于提高催化剂的低温活性,而硫酸盐改性提高了催化剂的Bronsted酸性,因此有利于催化剂高温下吸附NH_3,抑制了NH_3的过度氧化.另外,磷酸盐修饰能提高铈锆固溶体催化剂NH_3-SCR反应活性.然而,有关催化剂结构系统表征鲜见报道,催化剂的构效关系阐述不够详细.本文采用浸渍法将不同量的H_3PO_4负载于CeO_2上制备了H_3PO_4修饰的CeO_2催化剂,发现H_3PO_4修饰能显著改善CeO_2催化剂的NH_3-SCR性能.本文对催化剂结构进行了系统表征,详细探讨了H_3PO_4促进作用的原因.NH_3-SCR活性测试显示,H_3PO_4修饰后,催化剂活性显著提高,部分抑制了高温时CeO_2催化剂上NH_3的直接氧化,提高了SCR反应的选择性,从而拓宽了温度窗口.X射线衍射、红外光谱和拉曼光谱表征结果发现,随着H_3PO_4负载量增加,样品中CeO_2相逐渐减少,而新相如CeP_2O_7和Ce(PO_3)_4等逐渐增多,多磷酸根阴离子可能是表面酸性增强的关键因素.NH_3程序升温脱附和吸附吡啶红外光谱结果表明,随着H_3PO_4修饰量的增加,样品的酸强度逐渐增大,Lewis酸性逐渐减弱至消失,而Bronsted酸性逐渐增强.增强的Bronsted酸性可能归因于H_3PO_4修饰后样品表面不断增加的P-OH基团.相对于Lewis酸,Bronsted酸性位氧化能力更弱,可以抑制高温下NH_2(ads)继续脱氢,避免了NH_3深度氧化.程序升温还原测试结果表明,H_3PO_4修饰后,各还原峰向高温偏移,偏移量随H_3PO_4负载量增加而增加.这说明H_3PO_4修饰后CeO_2的氧化还原能力降低,抑制了高温下NH_3的过度氧化.因此,H_3PO_4的修饰使得CeO_2催化剂高温NH_3-SCR活性和N_2选择性大幅提高.综上所述,H_3PO_4-CeO_2样品优异的脱硝催化活性可能归因于H_3PO_4修饰后催化剂酸性,尤其是Bronsted酸性的增强以及氧化还原性的降低.  相似文献   

20.
自工业革命以来,二氧化碳(CO2)排放量迅速增加.将二氧化碳通过催化反应转化为高附加值产物,被认为是重要的减污降碳策略.然而,由于CO2还原反应产物的多样性以及催化剂制备过程中可能残留的有机物质,导致难以准确评估催化剂的真实活性.尽管13CO2同位素溯源技术已被广泛用于确定还原产物的碳源,但其严谨性不足可能导致溯源结果失真,影响了CO2还原领域的发展.为了解决CO2还原反应中催化剂活性评估的难题,汪圣尧等深入研究了同位素示踪原理,提出标准化同位素追溯新方法(Nat.Commun.,2023,14,2534).尽管气-质谱联用技术被视为普适方法,但现有方法难以充分分离复杂混合气体样品,因此需要谨慎对待溯源结果.13C-NMR光谱法常用于液体产物示踪,但由于自然界中存在13C同位素,这在一定程度上影响了同位素示踪技术的精确性.而1H-NMR因能识别与13C同位素相关的氢原子的特征分裂模式,而成为一种可行的替代方案.研究指出,同位素追踪在CO2减排中的应用复杂,需要选择合适的气相色谱条件实现产物的有效分离,以确保溯源结果的可靠性.该研究还建立了同位素溯源检测的标准方法,并提供了同位素标记物的质谱指纹图谱.对于理解同位素溯源过程和推动CO2还原研究具有重要意义.综上,对于CO2还原反应潜在产物的溯源研究已成为衡量催化剂真实性能的关键指标之一.文章提出的标准化同位素溯源方法可作为该领域研究的可靠标准,并为实现真实可靠的CO2还原反应提供有力保障.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号