首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have shown that the activity of cobalt-containing catalysts based on sulfated zirconium dioxide in selective catalytic reduction (SCR) of NO by methane depends on the amount of sulfur and the preparation method. Modification of Fe and Mn improves the catalytic behavior of SO 4 2− /ZrO2 as a result of the increase in the concentration of active sites.__________Translated from Teoreticheskaya i Eksperimental’naya Khimiya, Vol. 41, No. 2, pp. 121–125, March– April, 2005.  相似文献   

2.
We have studied the effect of small additives of Pt and Pd on the hydrogen sensitivity of semiconductor adsorption sensors based on SnO2 and on the catalytic activity of sensor materials of the same composition in oxidation of hydrogen. We have shown that as the amount of Pt or Pd increases, the catalytic activity increases and the sensitivity of the sensors passes through a maximum. The results obtained are explained taking into account the hydrogen spillover phenomenon. __________ Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 41, No. 5, pp. 302–306, September–October, 2005.  相似文献   

3.
The dependence of the specific catalytic activity (A sp ) of the catalysts Pt/SiO2 and Pt/TiO2 in the total oxidation of CH4 and n-C4H10 on the Pt nanoparticle size (in the range from 1 to 4 nm) was studied. The specific catalytic activity increases with an increase in the platinum nanoparticle size, indicating that the total oxidation is a structure-sensitive reaction. The structure sensitivity depends on the size of an oxidized molecule: it increases sharply on going from CH4 to n-C4H10. The support also exerts a considerable effect on the A sp value: in the oxidation of both CH4 and C4H10 the specific catalytic activity for the catalysts Pt/TiO2 is 3–4 times that for Pt/SiO2.  相似文献   

4.
We have shown that additions of Pt(Pd) and Cs+ to WO3 significantly increase its specific surface area and catalytic activity in H2 oxidation. After reduction, the promoted specimens contain the phases WO3, WO2.9, HxWO3; and in the case of Cs+ additions, CsxWO3. According to X-ray photoelectron spectroscopy (XPS), the Pt and Pd have an oxidation state close to 0, while tungsten has a +5 oxidation state. The W:O ratio indicates the content of oxygen vacancies in the surface layer. The data are explained taking into account hydrogen spillover from Pt(Pd) to the support.__________Translated from Teoreticheskaya i Eksperimental’naya Khimiya, Vol. 41, No. 2, pp. 126–129, March– April, 2005.  相似文献   

5.
We have shown that WO3 and MoO3 with Pt or Pd additives exhibit high catalytic activity in the reaction of H2 oxidation. In the temperature range 313 K to 353 K, we have studied the kinetic behavior of the reaction on 0.1 mass % Pt(Pd)/WO3 and Pt(Pd)/MoO3 samples. We have established that the kinetics of H2 oxidation on these catalysts correspond to an Eley - Rideal mechanism. __________ Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 41, No. 5, pp. 313–316, September–October, 2005.  相似文献   

6.
Together with methane, methanol is the main product of the hydrogenation of CO in the presence of platinum, palladium, and iridium, applied to Y-Al2O3, at atmospheric pressure and temperatures of 473–573 K. Dimethyl ether is also formed on platinum and palladium, while small amounts of ethanol and acetaldehyde are formed on iridium. The hydrogenation of CO in the presence of Rh and Ru leads to the formation of normal C1-C5 alcohols and C2-C5 aldehydes. Reduction of the energy of the metal-carbon bond in the platinum metals (Pd, Ir, Pt, Rh, Ru) increases their specific catalytic activity with respect to the formation of methane and oxygenated organic compounds, and increases the selectivity for higher alcohols and aldehydes.Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 24, No. 1, pp. 75–81, January–February, 1988.  相似文献   

7.
Pt-based catalysts cannot be used permanently for the diesel after-treatment system because the catalytic activity is decreased due to coarsening of Pt particles at high temperature of the exhaust gas. In this study, to prevent Pt-based catalyst from deactivation, Nd was added to the Pt/SiO2 catalyst, and the effect of the Nd addition on the catalytic activity was investigated. The Pt/SiO2 catalyst showed a high catalytic activity for the oxidation of NO but was severely deactivated after the fast thermal aging process. Pt crystallite size was increased and some Pt particles were buried in the SiO2 pore during the fast thermal aging process, which led to the decrease of catalytic activity. Nd-added Pt/SiO2 catalyst showed lower activity than Pt/SiO2 catalyst, but Pt–Nd/SiO2 catalyst maintained its catalytic activity after fast thermal aging process. It can be postulated that a stable Nd silicate, on which Pt particle is placed, protects SiO2 pores from destruction and so the number of the catalytically active sites remains nearly unchanged. As a result the Pt–Nd/SiO2 catalyst maintained its catalytic activity after fast thermal aging process.  相似文献   

8.
A study was carried out on the kinetics of the hydrogenation of carbon dioxide to give methane in the presence of supported rhodium catalysts with additives of Cr, Fe, Co, Mo, Pt, Sn, and Pb compounds. The modifying additives were shown to have a significant effect on the energy characteristics of the carbon dioxide hydrogenation reaction. The introduction of a metal additive into Rh/Al2O3 leads to an increase in the bond energy of the rhodium 3d5/2 electrons and, thus, to a positive charge on the rhodium particles and increase in the heat of hydrogen adsorption. In turn, the change in the heat of hydrogen adsorption significantly affects the specific catalytic activity of the catalysts studied.  相似文献   

9.
The oxidative coupling of methane (OCM) in a periodic regime over the SrMnO3 and its derivatives has been investigated. It has been established that partial replacement of the strontium ion by alkali metal ions leads to an increase in both catalytic activity and in selectivity with respect to higher hydrocarbons. Comparison of the results obtained in the present work with those obtained earlier for catalysts based on SrCoO3 led to the conclusion that the Co-containing catalysts were preferable to the Mn-containing catalysts for carrying out oxidative coupling of methane in a periodic regime.__________Translated from Teoreticheskaya i Éksperimentalnaya Khimiya, Vol. 41, No. 1, pp. 30–34, January–February, 2005.  相似文献   

10.
The multi-component nanocatalysts based on platinum-transient metals alloys applied onto dispersed carbon material are considered as the most promising catalysts, which can be substituted for platinum in the fuel cell cathodes. The electrocatalytic activity of platinum in the PtM1/C and PtM1M2/C alloys increases by several times with simultaneous increase in the stability. From the results obtained by structural and electrochemical methods, it is found that the synthesized binary and ternary catalysts are the metal alloys, whose surface is enriched in platinum as a result of surface segregation and subsequent chemical or electrochemical treatment. Under the corrosive attack, the less-noble metal, which has not entered into the alloy, dissolves, and the core-shell structures form. The properties of platinum in the shell differ from its properties in Pt/C due to the ligand effect of the core (metal alloy). As a result, the surface coverage with oxygen chemisorbed from water decreases in the binary and ternary systems. This causes an increase of the catalytic activity in the O2 reduction reaction due to a decline in the effect of surface blocking against molecular oxygen adsorption and a decrease in the platinum dissolution rate, because the oxidation of platinum by water is the onset of corrosion process. For the catalytic systems studied, the mass activity decreases in the following order: 20% Pt in PtCoCr/C > 7.3% Pt in PtCo/C ≥ 7.3% Pt in PtCr/C and PtNi/C ≥ 40% Pt/C. The application of PtCoCr/C catalyst as the cathode in a low-temperature hydrogen-air fuel cell enabled one to reduce the platinum consumption by one half on retention of its performance.  相似文献   

11.
The methods of synthesis of composite membrane catalysts based on Mо2C and Al2O3 support by a sol–gel method were developed. The samples of membrane catalysts with different architectures were developed. The difference in the catalytic activity of membrane catalysts in carbon dioxide conversion of methane depending on the porous structure and morphology of the catalytic layer was studied.  相似文献   

12.
We studied on the function of the metal in the sulfated zirconia(SO42–/ZrO2) catalyst for the isomerization reaction of light paraffins. The addition of Pt to the SO42–/ZrO2 carrier could keep the high catalytic activity. The improvement in this isomerization activity is because Pt promotes removal of the coke precursor deposited on the catalyst surface. Though this catalytic function was observed in other transition metals, such as Pd, Ru, Ni, Rh and W, Pt exhibited the highest effect among them. It was further found that the Pd/SO42–/ZrO2–Al2O3 catalyst possessed a catalytic function for desulfurization of sulfur-containing light naphtha in addition to the skeletal isomerization. The sulfur tolerance of catalyst depended on the method of adding Pd, and the catalyst prepared by impregnation of the SO42–/ZrO2–Al2O3 with an aqueous solution of Pd exhibited the highest sulfur tolerance.Further, we investigated the improvement in sulfur tolerance of the Pt/SO42–/ZrO2–Al2O3 catalyst by impregnation of Pd. The results of EPMA analysis indicated that this catalyst was a hybrid-type one (Pt/SO42–/ZrO2–Pd/Al2O3) in which Pt/SO42–/ZrO2 particles and Pd/Al2O3 particles adjoined closely. This hybrid catalyst possessed a very high sulfur tolerance to the raw light naphtha that was obtained from the atmospheric distillation apparatus, although this light naphtha contained much sulfur. We assume that such a high sulfur tolerance in the hybrid catalyst is brought about by the isomerization function of Pt/SO42–/ZrO2 particles and the hydrodesulfurization function of Pd/Al2O3 particles. Besides, since the hybrid catalyst also provides high catalytic activity in the isomerization of HDS light naphtha, we suggest that the Pd/Al2O3 particles supply atomic hydrogen to the Pt/SO42–/ZrO2 particles by homolytic dissociation of gaseous hydrogen and also enhance the sulfur tolerance of Pt/SO42–/ZrO2 particles. Finally, we also propose the most suitable location of Pd and Pt in the metal-supported SO42–/ZrO2–Al2O3 catalyst.  相似文献   

13.
The influence of the alumina support on the catalytic activity of Pt/Al2O3 catalysts in aqueous phase reforming of ethylene glycol to hydrogen was studied. The catalysts were prepared by impregnation of γ-, δ-, and α-alumina with H2PtCl6. The highest rate of hydrogen production (452 μmol min−1 g−1) obtained with the Pt/α-Al2O3 catalyst can be related to the highest extent of dispersion of Pt on α-Al2O3. XPS, TEM-EDX and TPR-H2 measurements showed the absence of chloride-containing surface complexes in the Pt/α-Al2O3 catalyst. However, chloride-containing entities were found on the surface of Pt/γ-Al2O3 and Pr/δ-Al2O3 catalysts. When chloride ions are removed chlorinated Pt species facilitate the sintering of Pt crystallites and in this way affect the extent of Pt dispersion. Moreover, depending upon the particular crystalline form, alumina atoms have different coordination and alumina surfaces contain varying amounts of OH groups of different nature which affect the interaction between Pt and the support.  相似文献   

14.
The surface area and the pentane isomerization activity of Pt/MoO3 were enlarged by H2 reduction. The enlargements was observed only when the reduction proceeded through the formation of hydrogen molybdenum bronze, HxMoO3. The catalytic activities of H2-reduced MoO3 with different noble metals for pentane isomerization and 2-propanol dehydration depended on the ability of noble metal to produce the HxMoO3 phases. H2-reduced Pt/MoO3 was more active for pentane isomerization than Pt/H, and its activity was comparable to that of Pt/HZSM-5. In heptane isomerization, H2-reduced Pt/MoO3 exhibited a lower activity than Pt/H, although heptane was isomerized very selectively. Strong adsorption of heptane onto H2-reduced Pt/MoO3 is likely to be a reason for its lower heptane isomerization activity.  相似文献   

15.
It was studied the influence of gold addition on physico-chemical properties and catalytic activity of bimetallic Ni-Au/Al2O3 catalyst in partial oxidation of methane (POM). The reduction behavior in hydrogen, XRD crystal structure, XPS spectra and POM catalytic activity were investigated. The reduction of Ni-Au catalyst is a prerequisite condition to catalyze POM reaction. The formation of Ni-Au alloy during high temperature reduction in hydrogen and also in the conditions of POM reaction was experimentally proved. The addition of gold to Ni/Al2O3 system improves catalyst stability and activity in POM reaction.  相似文献   

16.
The reaction mechanism of the gas-phase PtCH2 + with H2S has been systematically investigated on the doublet and quartet potential energy surfaces at BPW91/6-311++G(2d, p)∪ SDD level. The Pt in PtCH2 + prefers to attack S–H bond in H2S. For PtCH2 + + H2S reaction, the potential energy surfaces (PESs), including three reaction pathways of hydrogen (including one and two hydrogen elimination) and methane elimination, have been explored and characterized. By contrast with hydrogen elimination, methane elimination reaction channel is energetically favorable, which is in good agreement with the experimental observation. The optimal S–H bond activation is the first step, followed by cleavage of Pt–C and Pt–S bond. About the path a and b, the lowering of activation barrier is mainly caused by the more stabilizing transition state interaction \(\varDelta E_{\text{int}}^{ \ne }\), which is the actual interaction energy between the deformed reactants in the transition state.  相似文献   

17.
Tin and titanium dioxides and their compositions were studied as catalysts for the reaction of complete oxidation of methane. The catalytic activity of the test samples was compared in terms of first-order reaction rate constants with reference to the unit surface area of a catalyst. The crystal structures and specific surface areas of the obtained compositions were characterized. The thermal stability of SnO2 was investigated. Data on the temperature-programmed reduction of SnO2 and the composition Sn0.70Ti0.30O2 in hydrogen were given.  相似文献   

18.
It was shown that addition of Pt(Pd) and Cs+ to WO3 and MoO3 increases their catalytic activity in the oxidation of CO, at the same time there was a considerable broadening of the low temperature region of the reaction. It was established that formation of an active surface occurs as a result of partial reduction of the molybdenum and tungsten oxides. It is proposed that the reaction occurs at the phase boundary between Pt(Pd) and W and Mo oxides containing oxygen vacancies. __________ Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 41, No. 4, pp. 257–260, July–August, 2005.  相似文献   

19.
The state of surface Pt atoms in the Pt/SO4/ZrO2/Al2O3 catalyst and the effect of the state of platinum on its adsorption and catalytic properties in the reaction of n-hexane isomerization were studied. The Pt-X/Al2O3 alumina-platinum catalysts modified with various halogens (X = Br, Cl, and F) and their mechanical mixtures with the SO4/ZrO2/Al2O3 superacid catalyst were used in this study. With the use of IR spectroscopy (COads), oxygen chemisorption, and oxygen-hydrogen titration, it was found that ionic platinum species were present on the reduced form of the catalysts. These species can adsorb to three hydrogen atoms per each surface platinum atom. The specific properties of ionic platinum manifested themselves in the formation of a hydride form of adsorbed hydrogen. It is believed that the catalytic activity and operational stability of the superacid system based on sulfated zirconium dioxide were due to the participation of ionic and metallic platinum in the activation of hydrogen for the reaction of n-hexane isomerization.  相似文献   

20.
Gold catalysts with loadings ranging from 0.5 to 7.0 wt% on a ZnO/Al2O3 support were prepared by the deposition–precipitation method (Au/ZnO/Al2O3) with ammonium bicarbonate as the precipitation agent and were evaluated for performance in CO oxidation. These catalysts were characterized by inductively coupled plasma-atom emission spectrometry, temperature programmed reduction, and scanning transmission electron microscopy. The catalytic activity for CO oxidation was measured using a flow reactor under atmospheric pressure. Catalytic activity was found to be strongly dependent on the reduction property of oxygen adsorbed on the gold surface, which related to gold particle size. Higher catalytic activity was found when the gold particles had an average diameter of 3–5 nm; in this range, gold catalysts were more active than the Pt/ZnO/Al2O3 catalyst in CO oxidation. Au/ZnO/Al2O3 catalyst with small amount of ZnO is more active than Au/Al2O3 catalyst due to higher dispersion of gold particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号