首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermodynamic stability of thin films of the perfluoropolyether (PFPE) Z-Tetraol, as a function of molecular weight, on amorphous nitrogenated carbon, CNx, is investigated. An optical surface analyzer is used to image the autophobic dewetting of the Z-Tetraol films. Film dewetting results when the PFPE film thickness applied to the CNx surface exceeds a critical value. This critical dewetting thickness is identified as the monolayer thickness of the adsorbed PFPE film via measurements of the changes in the surface energy as a function of lubricant film thickness. The observed dewetting coincides with the film thickness at which the disjoining pressure goes to zero. The critical dewetting thickness is dependent on the PFPE molecular weight.  相似文献   

2.
The glass transition temperature (T(g)) of thin films is reduced by nanoconfinement, but it is also influenced by the free surface and substrate interface. To gain more insights into their contributions, dewetting behaviors of n-pentane, 3-methylpentane, and toluene films are investigated on various substrates as functions of temperature and film thickness. It is found that monolayers of these molecules exhibit sub-T(g) dewetting on a perfluoro-alkyl modified Ni substrate, which is attributable to the evolution of a 2D liquid. The onset temperature of dewetting increases with film thickness because fluidity evolves via cooperative motion of many molecules; sub-T(g) dewetting is observed for films thinner than 5 monolayers. In contrast, monolayers wet substrates of graphite, silicon, and amorphous solid water until crystallization occurs. The crystallites exhibit autophobic dewetting on the substrate covered with a wetting monolayer. The presence of premelting layers is inferred from the fact that n-pentane crystallites disappear on amorphous solid water via intermixing. Thus, the properties of quasiliquid formed on the crystallite surface differ significantly from those of the 2D liquid formed before crystallization.  相似文献   

3.
The thermodynamic stability of boundary lubricant films based upon mixtures of liquid perfluoropolyethers (PFPEs) is reported. Mixtures of A20H-2000 with Zdols 2000, 2500, and 4000 and Zdol-TX 2200 on amorphous carbon nitride films are investigated. An optical surface analyzer is used to image the autophobic dewetting of the mixture PFPE films. The critical dewetting thickness coincides with the monolayer thickness of the adsorbed mixture PFPE films as determined by the changes in the surface energy as a function of lubricant film thickness. The critical dewetting thickness varies linearly with mixture concentration.  相似文献   

4.
The dewetting process of an ultrathin film of a triblock copolymer, poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) was studied with an atomic force microscope. The surface morphology of the dewetting process exhibited two distinct dewetting processes of the 5.6 nm thick films: a slower dewetting for the polymer layer at the very vicinity of the substrate's surface, and a faster one for the polymer on top of this layer. The surface-induced difference in the kinetics of these two-step dewetting processes resulted in a special morphology evolution, including the absence of the dewetting rim, and a final unique network-like morphology.  相似文献   

5.
We demonstrate that the wetting behavior of a thin liquid film, poly(4-bromostyrene) (PBrS), on top of a solid substrate may be effectively controlled with the insertion of a secondary liquid film, poly(4-vinyl pyridine) (P4VP), underneath the primary film. This secondary film remains stable under all conditions, and can be viewed as an extension of the substrate itself. On the basis of results from X-ray standing waves generated via total external reflection from an X-ray mirror, time-of-flight secondary ion mass spectroscopy, optical microscopy, and atomic force microscopy, we construct the full Helmholtz free energy versus PBrS thickness curve using existing theories that account for both long- and short-range interactions. The form of the free energy curve, which contains an inflection point and an absolute minimum at a nonzero PBrS thickness, accurately reflects our observation that thick PBrS films undergo autophobic dewetting on top of the stable P4VP, while sufficiently thin PBrS films remain stable. The thickness of the autophobic wetting layer is controlled by the range of the repulsive interaction between the film and the substrate, and is found to be ~4 nm for the PBrS/P4VP interface.  相似文献   

6.
In recent years, the dewetting behavior of block copolymer films has been studied a lot, but that of random copolymer films was rarely studied. In this study, effects of film thickness and solvent vapor annealing duration (0 s–24 h) on the dewetting behavior of the spin-coated poly(styrene-co-acrylonitrile) (SAN) random copolymer films were mainly investigated by atomic force microscopy and contact angle method for the first time. The film thicknesses of the SAN films prepared at different concentrations were characterized by X-ray reflectometry to be 6–34 nm. With the annealing of acetone vapor, the SAN films first appear holes and then rupture into droplets which fuse and break periodically. The periodic evolutions of the droplets are due to the preferred affinity of acetone molecules with the AN segments and the change of surface energy. This phenomenon is different from the single evolutions in the spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymer films. This illustrates the interactions between AN segments and the substrate are stronger than those between PMMA segments and the substrate in the spin-coated films.  相似文献   

7.
Multiscale dewetting of poly(styrene‐b‐ethylene/butylenes‐b‐styrene) (SEBS) triblock copolymer thin films induced by volatile solvent vapor treatment were observed in this study. Film rupture occurred at first and produced macroscopic holes. Near‐regular droplets (which represented a compromise between complete disorder and perfect order) could be formed at the last stage. The mechanism of solvent‐driven dewetting was discussed by comparing with that of thermal‐induced dewetting. Similar to thermal‐induced dewetting, the block copolymer thin films initially break up through the nucleation of holes that perforated the films. The rapid growing holes became unstable and formed nonequilibrium fingering patterns. The films exhibit autophobic or autodewetting phenomena. The velocity of the holes growth was nearly a constant (3.3 μm/min). The stages of the dewetting were quite similar to that found for homopolymer and block copolymer thin films dewetting on solid or liquid substrates under thermal treatment. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2874–2884, 2005  相似文献   

8.
Numerous previous studies have established that the addition of a microphase-ordered AB diblock copolymer to a thin homopolymer A (hA) film can slow, if not altogether prevent, film rupture and subsequent film dewetting on a hard substrate such as silica. However, only a few reports have examined comparable phenomena when the hA/AB blend resides on a soft B-selective surface, such as homopolymer B (hB). In this work, the dewetting kinetics of thin films composed of polystyrene (PS) and a symmetric poly(styrene-b-methyl methacrylate) (SM) diblock copolymer on a poly(methyl methacrylate) substrate is investigated by hot-stage light microscopy. Without the SM copolymer, the dewetting rate of the PS layer is constant under isothermal conditions and exhibits Arrhenius behavior with an apparent activation energy of approximately 180 kJ/mol. Addition of the copolymer promotes a crossover from early- to late-stage dewetting kinetics, as evidenced by measurably different dewetting rates. Transmission electron microscopy reveals the morphological characteristics of dewetted PS/SM films as functions of film thickness and SM concentration.  相似文献   

9.
Regarding the molecular orientation on flat substrates, thin films have been studied of a series of wedge-shaped molecules (3,4,5-tris-substituted benzoate-benzo crown ether compounds) consisting of a hydrophobic outer rim and a polar group at the thin end which form columnar mesomorphic and crystalline structures. For most substrates studied here, autophobic dewetting is demonstrated to be caused by the formation of a monomolecular adlayer in which the molecules are oriented normal to the substrate surface with the hydrophobic tails directed away from the substrate. For thick films, this adlayer is shown to cause an "in-plane" orientation of the axis of the columnar state. An ordered in-plane oriented adlayer is observed only for highly ordered pyrolytic graphite as the substrate. In this case, specific interactions with the substrate cause formation of a well-ordered 2D pattern that might favor homeotropic orientation of the columnar structures but has to be optimized by further structural variation. The structure of the adsorbed monolayer is elucidated by combining contact angle measurements, plasmon resonance spectroscopy, and optical and scanning tunneling microscopy.  相似文献   

10.
Polyhedral oligomeric silsesquioxane (POSS) meets increasing interest as a building unit for inorganic-organic hybrid materials. The incorporation of cyclopentyl-substituted POSS (CpPOSS) into polystyrene (PS) thin films led to an inhibition of dewetting. In this paper, the dispersion state of CpPOSS in the CpPOSS/PS hybrid films and, furthermore, the relationships between the structure and dewetting inhibition effect are discussed. Structural analysis of the hybrid films revealed that CpPOSS segregated to the film surface and crystallized. The segregation of CpPOSS to the surface changes the surface free energy and spreading coefficient of the film. Interfacial structure was also roughened by the segregation of CpPOSS, which can contribute to the inhibition of dewetting by pinning the contact line of the PS film with the substrate. The inhibition of dewetting can be attributed to the modification of the film surface and interface by the segregation of CpPOSS.  相似文献   

11.
Three symmetrical semicrystalline oxyethylene/oxybutylene block copolymers (EmBn) were spin-coated on different substrates including silicon, hydrophobically modified silicon, and mica. The effects of surface property on the dewetting behavior of EmBn thin films and the chain orientation of the crystalline block were investigated with atomic force microscopy and grazing incidence X-ray diffraction . The EmBn thin films on silicon exhibit an autophobic dewetting behavior, while ordinary dewetting occurs for the thin films on modified silicon. It was observed that the stems of the E crystals in the first half-polymer layer contacting the mica surface were parallel to the surface, in contrast to the perpendicular chain orientation of the other polymer layers and of the first half-polymer layer on silicon. This is attributed to the strong interaction between the E block and mica, verified by infrared spectra.  相似文献   

12.
We have studied the coupling behavior of microphase separation and autophobic dewetting in weakly segregated poly(ε-caprolactone)-block-poly(L-lactide) (PCL-b-PLLA) diblock co-polymer ultrathin films on carbon-coated mica substrates. At temperatures higher than the melting point of the PLLA block, the co-polymer forms a lamellar structure in bulk with a long period of L ~ 20 nm, as determined using small-angle X-ray scattering. The relaxation procedure of ultrathin films with an initial film thickness of h = 10 nm during annealing has been followed by atomic force microscopy (AFM). In the experimental temperature range (100-140 °C), the co-polymer dewets to an ultrathin film of itself at about 5 nm because of the strong attraction of both blocks with the substrate. Moreover, the dewetting velocity increases with decreasing annealing temperatures. This novel dewetting kinetics can be explained by a competition effect of the composition fluctuation driven by the microphase separation with the dominated dewetting process during the early stage of the annealing process. While dewetting dominates the relaxation procedure and leads to the rupture of the ultrathin films, the composition fluctuation induced by the microphase separation attempts to stabilize them because of the matching of h to the long period (h ~ 1/2L). The temperature dependence of these two processes leads to this novel relaxation kinetics of co-polymer thin films.  相似文献   

13.
A series of copolymers comprising butylmethacrylate, styrene, butylacrylate, hydroxypropyl acrylate and perfluoroalkyl methacrylate were synthesized by the free radical polymerization using BPO as an initiator. The surface property of the copolymer films was subsequently characterized. The contact angle measurements and energy dispersive analysis of X-ray (EDAX) show that the length and content of perfluoroalkyl side chains in the copolymers are crucial for the preparation of the film with low surface energy. At a given content of fluorinated monomers in the copolymers, the longer the perfluoroalkyl side chain, the larger the water contact angle of the copolymer films will be. On the other hand, the higher the content of fluorinated monomers, the lower the surface energy is. The water contact angle increases with the increase of the fluorinated monomer content and reaches a plateau at 3 wt% of fluorinated monomer content.  相似文献   

14.
Poly(ethylene oxide) (PEO) could be grafted on the surface of polyaniline (PANI) films by chlorosulfonating the films with chlorosulfonic acid followed by reacting the modified films with PEO in a pyridine solution. The modified PANI films were examined by X-ray photoelectron spectroscopy and water droplet contact angles. The surface of the PEO grafted to hydrophobic PANI films became hydrophilic and the amounts of bovine serum albumin and human blood plasma platelet adsorbed onto it were decreased by more than 80%. For comparison purposes, and because the water wetting angle can be used as a measure of biocompatibility, wetting angle experiments have been also carried out for Pluronic triblock copolymer grafted to PANI and PEO or Pluronic molecules entrapped on the surfaces of PANI films. PANI was selected as substrate because one can easily change its surface properties by PEO grafting and because being conductive can be used as a sensor.  相似文献   

15.
O.K.C.Tsui 《高分子科学》2003,21(2):123-127
It has been a long-standing question whether dewetting of polymer film from non-wettable substrate surfaceswherein the bicontinuous morphology never forms in the dewetting film is due to spinodal instability or heterogeneousnucleation. In this experiment, we use a simple method to make the distinction through introduction of topographical defectsof the films by rubbing the sample surface with a rayon cloth. Spinodal dewetting is identified for those films that dewet by acharateristic wavevector, q, independent of the density of rubbing-induced defects. Heterogeneous nucleation, on the otherhand, is identified for those with q increasing with increasing density of defects. Our result shows that PS films on oxidecoated silicon with thickness less than ≈ 13 nm are dominated by spinodal dewetting, but the thicker films are dominated bynucleation dewetting. We also confirm that spinodal dewetting does not necessarily lead to a bicontinuous morphology in thedewetting film, contrary to the classic theory of Cahn.  相似文献   

16.
We used multibody dissipative particle dynamics method,by which the attractive and repulsive interactions can be effectively considered,to investigate the evaporation-induced morphology patterns of triblock copolymer A5B10C5 in thin film.With changing attractive interactions between solvent vapor and triblock copolymer that represent various selective solvents,lamellar morphology,sandwich lamellar morphology,spherical morphology and disorder morphology patterns of the thin films were obtained for both coil-coil-coil and rod-coil-coil chain architectures,respectively.The order parameter and the film thickness were calculated during the process for characterizing the film properties,and it was found that the rigid A-block of the triblock copolymer hinders the formation of an ordered structure.  相似文献   

17.
Microphase separation and morphology of star ABC triblock copolymers confined between two identical parallel walls (symmetric wetting or dewetting) are investigated with self-consistent field theory (SCFT) combined with the "masking" technique to describe the geometric confinement of the films. In particular, we examine the morphology of confined near-symmetric star triblock copolymers under symmetric and asymmetric interactions as a function of the film thickness and the surface field. Under the interplay between the degree of spatial confinement, characterized by the ratio of the film thickness to bulk period, and surface field, the confined star ABC triblock copolymers are found to exhibit a rich phase behavior. In the parameter space we have explored, the thin film morphologies are described by four primary classes including cylinders, perforated lamellae, lamellae, and other complex hybrid structures. Some of them involve novel structures, such as spheres in a continuous matrix and cylinders with alternating helices structure, which are observed to be stable with suitable film thickness and surface field. In particular, complex hybrid network structures in thin films of bulk cylinder-forming star triblock copolymers are found when the natural domain period is not commensurate with the film thickness. Furthermore, a strong surface field is found to be more significant than the spatial confinement on changing the morphology of star triblock copolymers in bulk. These findings provide a guide to designing novel microstructures involving star triblock copolymers via geometric confinement and surface fields.  相似文献   

18.
Ordered mesoporous zirconium phosphate films were prepared on a silicon substrate by spin coating using a mixture of zirconium isopropoxide, triethyl phosphate, Pluronic P123 triblock copolymer, nitric acid, ethanol, and water. The spin-on film was consecutively treated with vapors of phosphoric acid and ammonia. The post-vapor treatments effectively enhanced the thermal stability of an ordered mesostructure when heated to 500 degrees C. XRD and TEM analyses show that the calcined zirconium phosphate film has a hexagonal structure with straight channels parallel to the film surface. The zirconium phosphate film exhibited high proton conductivity of 0.02 S/cm parallel to the film surface at 80% RH and 25 degrees C.  相似文献   

19.
We describe the self-assembly of A-B-A triblock copolymers in thin films composed of a soft polydimethylsiloxane (PDMS) central block (B) and two polypeptidic (A) blocks, poly(γ-benzyl)-l-glutamate (PBLG). The PBLG segment exhibits depending on the chain length two distinct secondary conformations either a β-sheet or a α-helical conformation. The direct relationship between the surface morphology and the secondary conformation of the polypeptide segment has been evidenced by atomic force microscopy. For chain lengths below 20 U the polypeptide segments adopt preferentially a β-sheet secondary structure and the triblock copolymer self-assembled in fibers. Moreover, the fiber diameters increased with the chain length of the triblock copolymer. For chain lengths above 20, the α-helical structure is stabilized and a lamellar morphology is formed driven by rod-rod interactions in spite of the very asymmetric composition of the triblock copolymer. However, decreasing the film thickness from 25 to 8 nm, i.e., below the L/2 and due to the preferential attraction of the polypeptide block for the hydrophilic substrate employed, instead of a lamellar morphology a rod-like morphology could be found. Thus, the use of hybrid block copolymer containing polypeptides with particular secondary structures offers novel alternatives to control the self-assembly in thin films compared to traditional amorphous block copolymers.  相似文献   

20.
The wetting/dewetting behavior of thin films of lightly sulfonated low molecular weight polystyrene (SPS) ionomers spin-coated onto silica surfaces were studied using atomic force microscopy (AFM), contact angle measurements, and electron microscopy. The effects of the sulfonation level, the choice of the cation, the solvent used to spin-coat the films, and the molecular weight of the ionomer were investigated. Small angle X-ray scattering was used to determine the bulk microstructure of the films. The addition of the sulfonate groups suppressed the dewetting behavior of the PS above its glass transition temperature, e.g. no dewetting occurred even after 240 h of annealing at 120 degrees C. Increasing the sulfonation level led to more homogeneous and smoother surfaces. The choice of the cation used affected the wetting properties, but not in a predictable manner. When tetrahydrofuran (THF) or a THF/methanol mixed solvent was used for spin-casting, a submicron-textured surface morphology was produced, which may be a consequence of spinodal decomposition of the film surface during casting. Upon annealing for long times, the particles coalesced into a coherent, nonwetted film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号