首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[reaction: see text] Catalytic asymmetric hydroxymethylation of silicon enolates with an aqueous formaldehyde solution has been developed using a chiral bismuth complex. This is the first example of highly enantioselective reactions using a chiral bismuth catalyst in aqueous media. In this paper, we have added Bi(OTf)(3)-1 complex as a "water-compatible Lewis acid". Bi(OTf)3 is unstable in the presence of water but is stabilized by the basic ligand.  相似文献   

2.
New Yb(OTf)(3)-pyridylalkylamine complexes have been employed as chiral Lewis acids in the enantioselective Friedel-Crafts alkylation of indole derivatives with trifluoropyruvates. The influence of the substituents as well as the configuration of the ligands have been studied and allowed us to reach enantiomeric excesses up to 83%.  相似文献   

3.
Lewis acids such as Cu(OTf)(2), Zn(OTf)(2), Yb(OTf)(3) and Nd(OTf)(3) catalyze the aza-ene reaction of alkenes with azodicarboxylates, giving the allylic amination adducts. The use of bis(2,2,2-trichloroethyl)azodicarboxylate as the amination reagent and Cu(OTf)(2) and Yb(OTf)(3) as the catalysts gave the aza-ene reaction of different alkenes, leading to the corresponding allyl amines in high yields. Chiral copper complexes prepared from Cu(OTf)(2) and chiral bisoxazoline ligands were found to catalyze the enantioselective aza-ene reaction of azodicarboxylates with alkenes and the hetero-Diels-Alder reaction with cyclopentadiene, giving the corresponding aza-ene- and hetero-Diels-Alder adducts, respectively, in good yields and moderate enantioselectivities.  相似文献   

4.
[reaction: see text] C(2)-symmetric tridentate bis(oxazoline) and bis(thiazoline) ligands with a diphenylamine backbone have been investigated in the catalytic asymmetric Henry reaction of alpha-keto esters with different Lewis acids. Their Cu(OTf)(2) complexes furnished S enantiomers, while Et(2)Zn complexes afforded R enantiomers, both of them with higher enantioselectivities (up to 85% ee). Reversal of enantioselectivity in asymmetric Henry reactions was achieved with the same chiral ligand by changing the Lewis acid center from Cu(II) to Zn(II). The results show that the NH group in C(2)-symmetric tridentate chiral ligands plays a very important role in controlling both the yields and enantiofacial selectivity of the Henry products.  相似文献   

5.
Yang D  Yang M  Zhu NY 《Organic letters》2003,5(20):3749-3752
[reaction: see text] Chiral Lewis acid-promoted highly enantioselective intramolecular carbonyl ene reactions of unsaturated alpha-keto esters have been investigated. In the presence of chiral Lewis acids such as [Sc((R,R)-Ph-pybox)](OTf)(3) and [Cu((S,S)-Ph-box)](OTf)(2), several unsaturated alpha-keto esters underwent carbonyl ene reactions in CH(2)Cl(2) at room temperature to give monocyclic products in good yield and excellent enantioselectivity.  相似文献   

6.
We have developed asymmetric Mukaiyama aldol reactions of silicon enolates with aldehydes catalyzed by chiral FeII and BiIII complexes. Although previous reactions often required relatively harsh conditions, such as strictly anhydrous conditions, very low temperatures (?78 °C), etc., the reactions reported herein proceeded in the presence of water at 0 °C. To find appropriate chiral water‐compatible Lewis acids for the Mukaiyama aldol reaction, many Lewis acids were screened in combination with chiral bipyridine L1 , which had previously been found to be a suitable chiral ligand in aqueous media. Three types of chiral catalysts that consisted of a FeII or BiIII metal salt, a chiral ligand ( L1 ), and an additive have been discovered and a wide variety of substrates (silicon enolates and aldehydes) reacted to afford the desired aldol products in high yields with high diastereo‐ and enantioselectivities through an appropriate selection of one of the three catalytic systems. Mechanistic studies elucidated the coordination environments around the FeII and BiIII centers and the effect of additives on the chiral catalysis. Notably, both Brønsted acids and bases worked as efficient additives in the FeII‐catalyzed reactions. The assumed catalytic cycle and transition states indicated important roles of water in these efficient asymmetric Mukaiyama aldol reactions in aqueous media with the broadly applicable and versatile catalytic systems.  相似文献   

7.
Intramolecular Friedel-Crafts reaction of 4-arylbutyric acids efficiently proceeded in the presence of catalytic amounts of Lewis acids such as Bi(NTf2)3 and M(OTf)3 (M=Bi, Ga, In and rare-earth metals) to form 1-tetralones. Chroman-4-one and thiochroman-4-one were also obtained in good yields from 3-phenoxypropionic acid and 3-phenylthiopropionic acid, respectively.  相似文献   

8.
The catalytic efficiency of InCl(3), Yb(OTf)(3), and Sc(OTf)(3) in the azidolysis of alpha,beta-epoxycarboxylic acids has been studied in water and in organic solvents, for comparison using NaN(3) and Me(3)SiN(3) as the source of the azido group. In water, the catalytic effectiveness of these metal salts strongly depends on the pH of the aqueous medium and on the type of Lewis acid catalyst. In water their catalytic activity is mostly due to the corresponding aqua ion species, the concentration of which becomes significant when the pH of the aqueous medium is below the corresponding pK(1,1) hydrolysis constant. The process is more efficient in water than in organic solvents. At pH 4.0, InCl(3) is a far better catalyst than Yb(OTf)(3) or Sc(OTf)(3) and allows the highly regio- and diasteroselective preparation of beta-azido-alpha-hydroxycarboxylic acids, which can be isolated in pure form in very high yields.  相似文献   

9.
The first catalytic asymmetric synthesis of β-sultones is reported. This development has enabled a rapid access to a number of highly enantioenriched biologically interesting sulfonyl and sulfinyl compound classes, which makes use of the inherent ring strain of the four-membered heterocycles. The products possess either two vicinal stereocenters, such as in β-hydroxy-sulfonamides, -sulfonates, -sulfones, -sulfonic acids, -sulfinic acids, γ-sultines, and γ-sultones or a single stereocenter, such as in α-branched alkyl or allyl sulfonic acids. This work also represents the first application of sulfene intermediates in asymmetric catalysis. The reactivity of a sulfene normally acting as an electrophile could be reverted by the formation of a nucleophilic zwitterionic sulfene-amine adduct. To achieve a combination of high enantioselectivity and reactivity, cooperative catalytic action of a chiral nucleophilic tertiary amine (the cinchona alkaloid derivative diydroquinine 2,5-diphenyl-4,6-pyrimidinediyl diether ((DHQ)(2)PYR)) and Bi(OTf)(3) or In(OTf)(3) was of primary importance.  相似文献   

10.
An oxidative γ-functionalization of enals under N-heterocyclic carbene (NHC) catalysis to give unsaturated δ-lactones is disclosed. Enantioselectivity control involving the relatively remote enal γ-carbon was achieved via Lewis acid [Sc(OTf)(3) or combined Sc(OTf)(3)/Mg(OTf)(2)] and NHC cooperative catalysis.  相似文献   

11.
Catalytic quantities of bismuth(III) triflate efficiently initiate the rearrangement of epoxides to aldehydes, which subsequently react with (Z)-δ-hydroxyalkenylsilanes to afford 2,6-disubstituted 3,6-dihydro-2H-pyrans. Isolated yields of desired products using Bi(OTf)(3) were compared with yields obtained when the reactions were run with TfOH and TMSOTf in the presence and absence of several additives. These studies, as well as NMR spectroscopic analyses, indicate an initial Lewis acid/base interaction between Bi(OTf)(3) and substrates providing TfOH in situ.  相似文献   

12.
The coordination chemistry of the tetradentate pyridyl N-donor ligand cis-3,5-bis-[2-pyridinyleneamin]-trans-hydroxycyclohexane (DDOP) has been investigated with zinc(II) nitrate and triflate. The resulting complexes, [Zn(DDOP)(H2O)(NO3)](NO3) (1), and [Zn(DDOP)(H2O)(OTf)](OTf) (2) differ not only in their counterions, but also the arrangement of the axial ligands and their solid state hydrogen bonded networks. Isothermal titration calorimetry was used to assess the difference in binding properties exhibited by the two zinc complexes at physiological pH in an aqueous environment. A series of coordinating amino acids were found to preferentially bind to the mononuclear zinc triflate (1) complex over the corresponding nitrate (2) assembly, with histidine exhibiting a two centre binding mode.  相似文献   

13.
Chiral 2-oxazolines are valuable building blocks and famous ligands for asymmetric catalysis. The most common synthesis involves the reaction of an amino alcohol with a carboxylic acid. In this paper, an efficient synthesis of 2-oxazolines has been achieved via the stereospecific isomerization of 3-amido-2-phenyl azetidines. The reactions were studied in the presence of both Brønsted and Lewis acids, and Cu(OTf)2 was found to be the most effective.  相似文献   

14.
吕健  钟兴仁  程津培  罗三中 《化学学报》2012,70(14):1518-1522
研究了双酸催化剂不对称催化烯醚和β,γ-不饱和α-酮酸酯的反电子Hetero-Diels-Alder (HDA)反应, 为手性合成3,4-二氢-2H-吡喃类化合物提供了一种新的催化合成方法. InBr3与手性磷酸钙盐Ca(1c)2组合的手性双路易斯酸催化体系能够有效催化3,4-二氢-2H-吡喃和β,γ-不饱和α-酮酸酯的反电子HDA反应, 反应给出优秀的产率(最高达98%), 中等到良好的非对映选择性(最高达89:11)和良好到优秀的对映选择性(最高可达94%). 并且该双酸催化体系也能成功实现其它烯醚(如: 2,3-二氢-2H-呋喃, 乙烯基乙醚)的HDA反应, 获得优秀的非对映选择性(>94:6)和良好的对映选择性.  相似文献   

15.
The Lewis acidic pincer with a labile triflate ligand, viz. [Pd(OTf)(PCP)] (PCP = (-)CH(CH(2)CH(2)PPh(2))(2)) was prepared from [PdCl(PCP)] with AgOTf. It reacts readily with neutral bidentate ligands [L = 4,4'-bipyridine (4,4'-bpy) and 1,1'-bis(diphenylphosphino)ferrocene (dppf)] to give dinuclear PCP pincers [{Pd(PCP)}(2)(micro-L)][OTf](2) (L = 4,4'-bpy, 2; dppf,3). [PdCl(PCP)] also reacts with 4-mercaptopyridine in the presence of KOH to give a Lewis basic pincer with a free pyridine functional group [Pd(4-Spy)(PCP)]4. Its metalloligand character is exemplified by the isolation of an asymmetric dinuclear double-pincer complex [{Pd(PCP)}(2)(micro-4-Spy)][PF(6)] 6 bridged by an ambidentate pyridinethiolato ligand. Complexes 1, 2, 3, 4 and 6 have been characterized by single-crystal X-ray diffraction analyses.  相似文献   

16.
Redox‐inactive metal ions and Brønsted acids that function as Lewis acids play pivotal roles in modulating the redox reactivity of metal–oxygen intermediates, such as metal–oxo and metal–peroxo complexes. The mechanisms of the oxidative C?H bond cleavage of toluene derivatives, sulfoxidation of thioanisole derivatives, and epoxidation of styrene derivatives by mononuclear nonheme iron(IV)–oxo complexes in the presence of triflic acid (HOTf) and Sc(OTf)3 have been unified as rate‐determining electron transfer coupled with binding of Lewis acids (HOTf and Sc(OTf)3) by iron(III)–oxo complexes. All logarithms of the observed second‐order rate constants of Lewis acid‐promoted oxidative C?H bond cleavage, sulfoxidation, and epoxidation reactions of iron(IV)–oxo complexes exhibit remarkably unified correlations with the driving forces of proton‐coupled electron transfer (PCET) and metal ion‐coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes were taken into account. The binding of HOTf and Sc(OTf)3 to the metal–oxo moiety has been confirmed for MnIV–oxo complexes. The enhancement of the electron‐transfer reactivity of metal–oxo complexes by binding of Lewis acids increases with increasing the Lewis acidity of redox‐inactive metal ions. Metal ions can also bind to mononuclear nonheme iron(III)–peroxo complexes, resulting in acceleration of the electron‐transfer reduction but deceleration of the electron‐transfer oxidation. Such a control on the reactivity of metal–oxygen intermediates by binding of Lewis acids provides valuable insight into the role of Ca2+ in the oxidation of water to dioxygen by the oxygen‐evolving complex in photosystem II.  相似文献   

17.
Bismuth(III) compounds containing the Kl?ui's oxygen tripodal ligand [CpCo{P(O)(OEt)(2)}(3)](-) (L(OEt)(-)) have been synthesized, and their interactions with dichromate in aqueous media were studied. The treatment of Bi(5)O(OH)(9)(NO(3))(4) with NaL(OEt) in water afforded [L(OEt)Bi(NO(3))(2)](2) (1), whereas that of BiCl(3) with NaL(OEt) in CH(2)Cl(2) yielded L(OEt)BiCl(2) (2). Chloride abstraction of 2 with AgX afforded [L(OEt)BiX(2)](2) [X(-) = triflate (OTf(-)) (3), tosylate (OTs(-)) (4)]. In aqueous solutions at pH > 4, 4 underwent ligand redistribution to give the bis(tripod) complex [(L(OEt))(2)Bi(H(2)O)][OTs] (5). The treatment of 4 with Na(2)Cr(2)O(7) in acetone/water afforded the Bi(III)/Cr(VI) oxo cluster [(L(OEt))(4)Bi(4)(μ(3)-CrO(4))(2)(μ(3)-Cr(2)O(7))(2)] (6) containing a unique Bi(4)Cr(4)O(12) oxometallic core. Compound 6 oxidized benzyl alcohol to give ca. 6 equiv of benzaldehyde. The reaction between 2 and CrO(3) yielded [L(OEt)Bi(OCrO(2)Cl)](2)(μ-Cl)(2) (7). The crystal structures of complexes 4-7 have been determined.  相似文献   

18.
Bi(OTf)(3)·nH(2)O was found to be an efficient promoter of the cyclisative hydroamination of unactivated alkenyl sulfonamides, giving rise to the N-protected 2-methyl pyrrolidines in good to excellent yields (up to 95%). Based on control experiments, a joint Lewis acid-Br?nsted acid catalysis might be in operation, or triflic acid itself, generated in situ by hydrolysis of metal triflate, could be the true hydroamination catalyst.  相似文献   

19.
The lowest excited state of aromatic carbonyl compounds (naphthaldehydes, acetonaphthones, and 10-methylacridone) is changed from the n,pi triplet to the pi,pi singlet which becomes lower in energy than the n,pi triplet by the complexation with metal ions such as Mg(ClO(4))(2) and Sc(OTf)(3) (OTf = triflate), which act as Lewis acids. Remarkable positive shifts of the one-electron reduction potentials of the singlet excited states of the Lewis acid-carbonyl complexes (e.g., 1.3 V for the 1-naphthaldehyde-Sc(OTf)(3) complex) as compared to those of the triplet excited states of uncomplexed carbonyl compounds result in a significant increase in the redox reactivity of the Lewis acid complexes vs uncomplexed carbonyl compounds in the photoinduced electron-transfer reactions. Such enhancement of the redox reactivity of the Lewis acid complexes leads to the efficient C-C bond formation between benzyltrimethylsilane and aromatic carbonyl compounds via the Lewis-acid-promoted photoinduced electron transfer. The quantum yield determinations, the fluorescence quenching, and direct detection of the reaction intermediates by means of laser flash photolysis experiments indicate that the Lewis acid-catalyzed photoaddition reactions proceed via photoinduced electron transfer from benzyltrimethylsilane to the singlet excited states of Lewis acid-carbonyl complexes.  相似文献   

20.
New homonuclear dimeric Pd(ii) complexes have been synthesized by the reaction of Pd(en)(2+) or Pd(bipy)(2+) (where en = ethylenediamine and bipy = 2,2'-bipyridine) units with acetamide or by the Pd(ii) mediated hydrolysis of CH(3)CN. In these dimers the two metal centers are bridged by either two amidates or by the combination of one hydroxo group and one amidate ligand. The crystal structures of complexes {[Pd(bipy)](2)(micro-1,3-CH(3)CONH)(2)}(NO(3))(2).H(2)O.1/2(CH(3))(2)CO.1/2CH(3)CN () and {[Pd(bipy)](2)(micro-1,3-CH(3)CONH)(2)}(OTf)(2) () showed intrametallic Pd-Pd distances of 2.8480(8) A () and 2.8384(7) A (), respectively, in accordance with the accepted values for a strong Pd-Pd interaction. The presence of pi[dot dot dot]pi interactions between the bipyridine ligands on the di-micro-amidate complexes of Pd(bipy)(2+) shortens the distance between the two Pd centers and allows the formation of the metal-metal interaction. By contrast, the crystal structure of complex {[Pd(en)](2)(micro-1,3-CH(3)CONH)(2)}(OTf)(2).H(2)O (), (where OTf = triflate) where there is no pi[dot dot dot]pi interaction between the ligands on the metal centers, is also reported, and no Pd-Pd interaction is observed. Additionally, one of the complexes, {[Pd(en)](2)(micro-OH)(micro-CH(3)CONH)}(NO(3))(2) (), presents an interesting hydrogen bonded 3-D network formed by nitrate ions and water molecules. All complexes have been characterized by infrared and (1)H NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号