首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
利用循环伏安法和恒电位电解法研究了室温下在二甲基亚砜中铈钴合金膜的电化学制备.结果表明,二甲基亚砜中Ce(Ⅲ)在Pt电极上的还原反应为一步完全不可逆反应.控制沉积电位在-2.10V~2.30V,利用恒电位电解得到表面平滑,附着力好,铈含量为37wt%~45wt%的铈钴合金膜.  相似文献   

2.
通过控制固/液界面电极电位的方式, 控制表面活性剂和金属离子在电极表面的自组装, 制备出了高度取向的ZnO/表面活性剂复合多层膜. 对无机层形态和结构进行了分析, 并采用X射线反射率和X射线漫散射研究了电极电位控制下ZnO/表面活性剂复合多层膜在固/液界面的自组装生长. 结果表明, 在一定电位下, 只有当表面活性剂浓度低于其饱和吸附浓度时, 采用阶跃电位沉积方式才能明显改变复合薄膜的周期厚度; 恒电位沉积方式控制电极电位时, 随着沉积电位的提高, 多层膜层状结构由一组层状相变为多组层状相, 同时层状结构的取向变差. 实验研究结果验证了电化学自组装过程是由金属离子的还原速度和表面活性剂的吸附速度二者共同控制完成的.  相似文献   

3.
锂离子电池薄膜锡负极材料的制备及容量衰减机理研究   总被引:1,自引:0,他引:1  
以电镀的方法在铜基底上沉积薄膜锡作为锂离子电池负极材料. 运用X射线衍射、扫描电镜、电化学循环伏安、电化学充放电和交流阻抗等多种方法对其结构和性能进行表征和研究. 结果表明所制备的薄膜锡电极主要为四方晶系结构, 其初始放电(嵌锂)容量为709 mAh•g-1, 充电(脱锂)容量为561 mAh•g-1. 电化学循环伏安研究发现在嵌/脱锂过程中薄膜锡经历了多种相变过程. 电化学阻抗谱结果说明, 首次嵌锂过程中当电极电位达到1.2 V在电极表面形成SEI膜, 而当电极电位低于0.4 V表面SEI膜出现破裂, 归因于体积膨胀所致. SEM研究表明30次充放电循环后薄膜锡负极出现龟裂现象.  相似文献   

4.
本文采用脉冲电流法(PGM)在不同的基底材料表面沉积PANI, 通过平均电位\|时间曲线及扫描电子显微镜(SEM)等方法研究了基底材料对PGM法制备PANI的影响; 并采用循环伏安(CV)和电化学阻抗谱(EIS)研究了不同电极材料表面PANI的电化学性能.  相似文献   

5.
苗伟俊  张余宝  古宁宇  刘峰 《电化学》2012,18(4):359-364
用γ-氨丙基三甲氧基硅烷(γ-APS)溶液对铜箔表面硅烷化处理,采用动电位极化和电化学交流阻抗研究不同pH的γ-氨丙基三甲氧基硅烷溶液自组装铜箔电极在0.1 mol.L-1NaCl溶液的腐蚀防护效果,采用扫描电子显微镜观察γ-氨丙基三甲氧基硅烷自组装膜的表面形貌.结果表明,γ-氨丙基三甲氧基硅烷自组装铜箔有较好的腐蚀防护效果,其中pH=7的γ-氨丙基三甲氧基硅烷溶液自组装膜的抗腐蚀效果最佳.  相似文献   

6.
采用镀膜/循环伏安法制备了PbO2修饰玻碳电极.在Pb(NO3)2溶液中,在-0.7 V 将Pb膜沉积在玻碳电极表面,然后在5 mol/L NaOH溶液中以100 mV/s速度在-1.0~1.0 V循环伏安扫描20次,PbO2膜均匀沉积在玻碳电极表面.采用交流阻抗法监控电极修饰每一过程,环境扫描电镜表征电极表面形貌.探讨了PbO2膜的沉积机理及其电化学行为,表面活性位点覆盖量为7.5×10-10 mol/cm2.PbO2修饰电极对H2O2电氧化表现出较高催化活性,起始氧化电位低至0.1 V,考察了影响催化活性的因素.计时电流法测定H2O2 (工作电位0.40 V),响应时间小于2 s; 线性范围为5.0 ×10-6 ~ 5.5×10-4 mol/L;检出限1.1×10-6 mol/L (信噪比为3).在实际水样中H2O2测定结果满意.电极在室温环境下储存30 d,其催化活性基本不变.该修饰电极制备工艺简单、重现性良好、稳定性高.  相似文献   

7.
6063铝合金三价铬化学转化膜的制备与电化学性能   总被引:2,自引:0,他引:2  
以硫酸铬钾及磷酸为原料在6063铝合金上制备了三价铬化学转化膜. 采用极化曲线及交流阻抗技术研究了不同条件下三价铬转化膜的电化学性能. 结果表明, 温度为30-40 ℃、沉积时间为9 min、pH值为2.0-3.0、KCr(SO4)2为15-25 g·L-1及H3PO4的浓度为10-20 g·L-1的条件为最优条件. Tafel极化曲线结果表明化学转化膜比基体铝合金具有更正的腐蚀电位(Ecorr)、小孔腐蚀电位(Epit)和更低的腐蚀电流(icorr), 说明化学转化膜具有良好的耐腐蚀性能. 利用交流阻抗谱的数据建立了等效电路模型, 并拟合出了腐蚀参数, 如表面电阻(Rcoat)及电容(Ccoat), 电荷转移电阻(Rct)及双电层电容(Cdl)等. 三价铬化学转化膜的交流阻抗谱结果与极化曲线的电化学测试结果相吻合.  相似文献   

8.
在Zn(Ⅱ)-NH_4Cl准中性体系中,采用循环伏安法(CV)研究了Zn~(2+)在锌电极上的反应方式,通过计时电流法(CA)研究了Zn~(2+)沉积的成核方式,利用交流阻抗谱(EIS)考察了不同过电位时Zn~(2+)沉积的阻抗行为。结果表明:Zn~(2+)的电沉积是一个不可逆电极反应,以两步骤单电子串联的方式进行,第一步为速控步;电极反应的电荷传递系数与锌电极的表面结构有关。在恒电位条件下,体系中锌电极上Zn~(2+)的结晶近似于三维瞬时成核方式。Zn~(2+)的沉积经历了覆盖、吸附成膜、大量晶核形成等过程,该过程随着控制电位的负移由电化学极化过渡到电化学极化-浓差极化混合控制阶段。最后给出了Zn~(2+)在锌电极上电沉积过程的机理。  相似文献   

9.
以氧化铟锡(ITO)透明导电玻璃为导电基体, 采用恒电位电化学沉积方法, 在其表面制备Pt颗粒. 使用扫描电子显微镜(SEM), 能量色散X射线荧光光谱(EDS)与X射线衍射(XRD)表征了ITO表面沉积的Pt颗粒的形貌, 成分和结构. 采用循环伏安(CV)和电化学活性面积(EASA)表征Pt/ITO电极在碱性介质中对氨的电催化氧化性能及其有效电化学表面积. 结果表明, 采用电化学沉积方法, 可在ITO表面获得具有较好分散度的亚微米尺寸的Pt颗粒. 制备的Pt/ITO电极在较低Pt担载量(约0.12 mg•cm-2)的条件下, 即可获得远高于纯Pt电极的电催化氧化氨活性. 这主要归因于电化学沉积制备的Pt颗粒尺寸较小且在ITO表面呈良好分散, 具有很高的电化学活性面积.  相似文献   

10.
紫外光照下纳米TiO2电极的电化学行为   总被引:9,自引:0,他引:9  
崔晓莉  江志裕 《物理化学学报》2002,18(11):1014-1017
通过电沉积方法制备了纳米TiO2薄膜电极,应用循环伏安和交流阻抗技术研究了TiO2电极在253.7 nm的紫外光照射下的电化学行为.结果表明, TiO2薄膜电极的循环伏安图在+0.15 V处出现新的氧化峰,交流阻抗谱的半圆明显减小,电极的开路电位在有光和无光的情况下呈现规律变化.实验证实在紫外光照射下电极表面有新物种Ti3+生成,但光生Ti3+不稳定.  相似文献   

11.
Aluminium alloys such as AA2024 are susceptible to severe corrosion attack in aggressive solutions (e.g. chlorides). Conversion coatings, like chromate, or rare earth conversion coatings are usually applied in order to improve corrosion behaviour of aluminium alloys. Methacrylate‐based hybrid films deposited with sol–gel technique might be an alternative to conversion coatings. Barrier properties, paint adhesion and possibly self‐healing ability are important aspects for replacement of chromate‐based pre‐treatments. This work evaluates the behaviour of cerium as corrosion inhibitor in methacrylate silane‐based hybrid films containing SiO2 nano‐particles on AA2024. Hybrid films were deposited on aluminium alloy AA2024 by means of dip‐coating technique. Two different types of coating were applied: a non‐inhibited film consisting of two layers (non‐inhibited system) and a similar film doped with cerium nitrate in an intermediate layer (inhibited system). The film thickness was 5 µm for the non‐inhibited system and 8 µm for the inhibited system. Film morphology and composition were investigated by means of GDOES (glow discharge optical emission spectroscopy). Moreover, GDOES qualitative composition profiles were recorded in order to investigate Ce content in the hybrid films as a function of immersion time in 0.05 M NaCl solution. The electrochemical behaviour of the hybrid films was studied in the same electrolyte by means of EIS technique (electrochemical impedance spectroscopy). Electrochemical measurements provide evidence that the inhibited system containing cerium displays recovery of electrochemical properties. This behaviour is not observed for the non‐inhibited coating. GDOES measurements provide evidence that the behaviour of inhibited system can be related to migration of Ce species to the substrate/coating interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Nanocrystalline Mg–Nb and Mg–Nb–Al–Zn alloy films were deposited by dc magnetron sputtering on glass and quartz substrates in a wide range of niobium concentrations from 6 to 80 at.%. Structural, electrochemical and corrosion properties of the films were studied by X-ray diffraction, dc voltammetry, electrochemical impedance spectroscopy and electrochemical quartz crystal microbalance. Development of body-centred cubic Nb structure in the Mg–Nb alloy matrix yielded the effects of lattice contraction, grain refining and electrochemical passivity. The measurements showed high corrosion resistance of the films in alkaline solutions when niobium content was one third or more. An increased corrosion resistance was achieved by introducing minor amounts of Al (ca. 2 at.%). In particular, such Al effect was pronounced at lower Nb concentrations (20 to 30 at.%). Semiconductor properties of spontaneously formed oxide on Mg–Nb alloy were studied by Mott–Schottky plots, which indicated highly doped n-type oxide structures on Mg–Nb surface. The paper fills some gap in understanding of niobium–magnesium systems, which show potential for applications in hydrogen storage, switchable mirrors and corrosion protection.  相似文献   

13.
Electrochemical properties of a thin-film nanocomposite “silicon-carbon matrix-tungsten carbide” deposited onto pyroceramics (“sitall”) substrate are studied by potentiodynamic curves and electrochemical impedance spectroscopy. Transfer coefficients in model redox system [Fe(CN)6]3?/4? are measured. With the decreasing of the films’ electrical resistance, their experiment behavior gradually changed from that of “poor conductor” till nearly metal-like one. In particular, the electrode differential capacitance increases, which is explained by the increase in the number of conducting metal-containing clusters in the film bulk and at the film/electrolyte solution interface. Some specific features of the complex-plane plots of impedance spectra are tentatively explained by the adsorption at the nanocomposite surface elements.  相似文献   

14.
The characteristics of oxide films on Zr and Zr–Nb alloys (with Nb content of 2.5, 5, and 10 at.%) galvanostatically formed (at a current density of 100 μA cm?2) in 0.5 M H2SO4 solution were investigated by means of electrochemical impedance spectroscopy. Electrochemical impedance spectroscopy spectra were interpreted in terms of an “equivalent circuit” with the circuit elements representing the electrochemical properties of a single layer oxide. The resistance of the oxide films was found to increase with increased Nb content in the alloy while the capacitance showed an opposite trend. The stability of the anodic oxide films grown in the sulfuric acid solution on Zr and Zr–Nb alloys was investigated by simultaneously measuring the electrode capacitance and resistance at a working frequency of 1 kHz as a function of exposure time to naturally aerated 3 M NaOH solution. Analyses of the electrode capacitance and resistance values indicated a decrease in chemical dissolution rate of the oxide films with the increase of Nb content in the alloy.  相似文献   

15.
紫铜表面3-巯丙基三乙氧基硅烷薄膜的制备与耐蚀性能   总被引:2,自引:0,他引:2  
利用傅里叶变换红外(FTIR)光谱分析了3-巯丙基三乙氧基硅烷分别在酸性和碱性的醇-水溶液中水解后以及在紫铜表面成膜后的结构特征. 利用极化曲线、电化学阻抗谱(EIS)和盐水浸泡实验测试了硅烷膜的耐腐蚀性能. 结果表明: 3-巯丙基三乙氧基硅烷在酸性溶液中能够发生一定程度的水解并生成Si―OH结构, 且当该溶液在自然状态下晾干后, 其水解程度进一步增大. 在碱性溶液中该硅烷只发生少量的水解, 溶液中含有较多SiOCH2CH3结构, 且在溶液自然晾干后水解程度也没有明显增大. 由酸性硅烷溶液制得的薄膜中硅烷分子以Si―O―Si 键相互交联的程度比由碱性硅烷溶液制得的薄膜高. 硅烷膜降低了紫铜电极的腐蚀电流密度, 其保护效率分别为90.3%(酸性)和79.2%(碱性). 在3.5% (w) NaCl溶液中浸泡24 h后, 由酸性溶液制得的薄膜表现出更高的阻抗值, 而由碱性溶液制得的薄膜则基本失去了对基底的保护能力.  相似文献   

16.
Electroless Ni–P and Ni–P–TiCN composite coatings have been deposited successfully on Al substrates. Scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) techniques were applied to study the surface morphology and the chemical composition of the deposited films. Moreover, X‐ray diffraction (XRD) proved that Ni–P and Ni–P–TiCN deposits have amorphous structures. The properties of Ni–P–TiCN/Al composite films such as hardness, corrosion resistance and electrocatalytic activity were examined and compared with that of Ni–P/Al film. The results of hardness measurements reveal that the presence of TiCN particles with Ni–P matrix improves its hardness. Additionally, the performance against corrosion was examined using Tafel lines and electrochemical impedance spectroscopy techniques in both of 0.6 M NaCl and a mixture of 0.5 M H2SO4 with 2 ppm HF solutions. The results indicate that the incorporation of high dispersed TiCN particles into Ni–P matrix led to a positive shift of the corrosion potential and an increase in the corrosion resistance for all aluminum substrates after their coating with Ni–P–TiCN. In addition, Ni–P–TiCN/Al electrodes showed a higher electrochemical catalytic activity and stability toward methanol oxidation in 0.5 M NaOH solution compared with that of Ni–P/Al. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The electrochemical corrosion behavior of the non‐precious Ni‐Cr Wirolloy, being used in dentistry, was investigated before and after applying of two types of eco‐friendly coatings, polyvinyl silsesquioxane (PVS) and nano‐hydroxyapatite (nHAP) separately in artificial saliva solution at 37 °C for 14 d of immersion. The study aimed to investigate the effectiveness of the introduced coating films in enhancing the corrosion resistance of the alloy, and in decreasing the leaching of the toxic Ni ions from the alloy into the environment. The electrochemical corrosion investigation methods used are; open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. The evaluated results revealed that the electrochemically coated alloy with PVS. prepared at cathodic potential showed higher corrosion resistance and more stable film compared to that prepared by conventional dip‐coating method. At the same time, the nHAP electrochemically coated film provided the best anti‐corrosion properties over all examined time intervals. The obtained results were confirmed via surface analysis, which assured the formation of the prepared coatings on the alloy surface. Chemical analysis of the corrosion product/solutions showed that the effect of electrochemically deposited nHAP and PVS. polymer films in suppression of Ni ions leaching is similar and slightly higher than that of the chemically coated PVS. one; however, all of them are efficient in decreasing the leaching of the risky Ni ions into the solution.  相似文献   

18.

The review summarizes selected aspects of the electrochemical investigations on hydrogen absorption in palladium and its alloys prepared as thin layers deposited on a conductive substrate. These kinds of electrodes are named “limited volume electrodes” (LVEs). We demonstrate that LVE methodology creates new possibilities for electrochemical studies on hydrogen-absorbing materials. In this paper, we describe the procedures of preparation and characterization of Pd-based LVEs and give a survey of the investigations on hydrogen electrosorption performed with the use of LVEs. We discuss the influence of such factors as electrode potential, temperature, electrolyte composition, electrode thickness, and other experimental conditions on the process of hydrogen and deuterium absorption in Pd LVEs. The results concerning Pd alloys are thoroughly reviewed. The studies on thermodynamics, kinetics, and mechanism of hydrogen electrosorption in Pd and its alloys are also summarized. Attention is paid to the examination of the interrelation between hydrogen absorption and other electrochemical processes taking place on LVEs. Finally, possible applications of the LVE methodology in the context of electrochemical power sources are mentioned.

  相似文献   

19.
Serebrennikova I  Lee S  White HS 《Faraday discussions》2002,(121):199-210; discussion 229-51
Spatial!y localized electrochemical activity at Al/Al2O3 electrodes has been investigated using scanning electrochemical microscopy (SECM) in order to establish the relationship between localized corrosion of Al (and Al alloys) with the defect structure of the native Al2O3 film. Local electron transfer at microscopic defects (2 to 50 microm radius) was visualized in acetonitrile solutions using the nitrobenzene/nitrobenzene radical anion (Eo approximately -1.6 V vs. Ag/Ag+) and tetracyanoquinodimethane/tetracyanoquinodimethane radical anion couples (Eo approximately -0.3 V) as redox mediators for imaging. SECM investigations revealed no significant differences in electrochemical activity at Al/AI203 electrodes in the two mediator solutions, indicating that electrical conduction at the defect sites is weakly dependent on interfacial potential and the electric field across the Al2O3 film. The density of electroactive defects observed by SECM varied by 2 to 3 orders of magnitude between electrodes prepared from the same source of Al (either 99.450% and 99.9995%) suggesting that electrical conduction in the native oxide is very sensitive to surface preparation. Defect densities as low as approximately 3 sites cm(-2) were readily measured by SECM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号