首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polaron effects on excitons in parabolic quantum wells are studied theoretically by using a variational approach with the so-called fractional dimension model. The numerical results for the exciton binding energies and longitudinal-optical phonon contributions in GaAs/Al0.3Ga0.7As parabolic quantum well structures are obtained as functions of the well width. It is shown that the exciton binding energies are obviously reduced by the electron (hole)-phonon interaction and the polaron effects are un-negligible. The results demonstrate that the fractional-dimension variational theory is effectual in the investigations of excitonic polaron problems in parabolic quantum wells.  相似文献   

2.
We investigate multiexciton bound states in a semiconducting phase of divalent hexaborides. Due to three degenerate valleys in both the conduction and valence bands the binding energy of a 6-exciton molecule is greatly enhanced by the shell effect. The ground state energies of multiexciton molecules are calculated using the density functional formalism. We also show that charged impurities stabilize multiexciton complexes leading to condensation of localized excitons. These complexes can act as nucleation centers of local moments. Received 24 October 2000  相似文献   

3.
张红  张春元  张慧亮  刘建军 《物理学报》2011,60(7):77301-077301
在一维等效模型下采用有效差分法对抛物型量子阱线中带电激子的束缚能进行了计算,分析了约束势以及磁场对带电激子束缚能的影响,并对带正电激子(X+)和带负电激子(X-)的情况进行了比较.结果表明:电子和空穴的振子强度对带电激子的稳定性有重要影响,X+的束缚能不总是比X-的大,随着空穴振子强度的增加束缚能的函数曲线将会出现交叉,这同实验得到的结果符合;磁场的存在会增加粒子间的束缚,并且磁场对束缚能的影响同振子强度大小有关. 关键词: 带电激子 量子线 束缚能 磁场  相似文献   

4.
We investigate the effect of the longitudinal-optical phonon field on the binding energies of excitons in quantum wells, well-wires and nanotubes based on ionic semiconductors. We take into account the exciton-phonon interaction by using the Aldrich-Bajaj effective potential for Wannier excitons in a polarizable medium. We extend the fractional-dimensional method developed previously for neutral and negatively charged donors to calculate the exciton binding energies in these heterostructures. In this method, the exciton wave function is taken as a product of the ground state functions of the electron polaron and hole polaron with a correlation function that depends only on the electron-hole separation. Starting from the variational principle we derive a one-dimensional differential equation, which is solved numerically by using the trigonometric sweep method. We find that the potential that takes into account polaronic effects always give rise to larger exciton binding energies than those obtained using a Coulomb potential screened by a static dielectric constant. This enhancement of the binding energy is more considerable in quantum wires and nanotubes than in quantum wells. Our results for quantum wells are in a good agreement with previous variational calculations. Also, we present novel curves of the exciton binding energies as a function of the wire and nanotubes radii for different models of the confinement potential.  相似文献   

5.
Z.P. Wang  X.X. Liang 《Physics letters. A》2009,373(30):2596-2599
Electron-phonon effects on Stark shifts of excitons in parabolic quantum wells are studied theoretically by using a fractional dimension method in combination with a Lee-Low-Pines-like transformation and a perturbation theory. The numerical results for the exciton binding energies and electron-phonon contributions to the binding energies as functions of the well width and the electric field in the Al0.3Ga0.7As parabolic quantum well structure are obtained. It is shown that both exciton binding energy and electron-phonon contributions have a maximum with increasing the well width. The binding energy and electron-phonon contribution decrease significantly with increasing the electric-field strength, in special in the wide-well case.  相似文献   

6.
We measured photoluminescence (PL) from excitons and biexcitons in GaN nanocolumns at low temperature and found that the PL spectra of excitons depend on the nanocolumn diameter. Taking into account the polaritonic effect of the excitons, calculation of the PL spectra revealed that the dependence on diameters causes a difference of PL intensity from side surfaces of the nanocolumns. At high excitation intensities, we also observed biexciton emissions and found that the biexciton binding energies are higher than those in bulk samples. Although the mechanism for the increase in the binding energy is not clear at present, we suppose that it arises from a spatial confinement effect due to the nanocolumn morphology.  相似文献   

7.
In this paper we review briefly the use of high resolution photoluminescence to study the behavior of shallow impurity states in compound semiconductors. As an illustration we focus our review on GaAs. The binding energies of the ground state and of several low-lying excited states of the impurity centers are determined by studying the radiative transitions associated with excitons bound to neutral donors or acceptors. The difference between the binding energies of different donors in GaAs is rather small. Thus to resolve transitions associated with different chemical donors a magnetic field is used. This has the effect of sharpening the transitions as well as increasing the separation between them. One can identify donors in samples with total impurity concentrations as high as 5X1015/cm3. The binding energies of different chemical acceptors in GaAs are much higher. Thus the radiative transitions associated with excitons bound to neutral acceptors can be resolved in zero magnetic field. Energy levels of shallow donors and acceptors in GaAs are reviewed.  相似文献   

8.
We predict that a phase transition in freestanding monolayer Xenes from the semiconducting phase to the excitonic insulating (EI) phase can be induced by reducing an external electric field below some critical value which is unique to each material. The splitting of the conduction and valence bands due to spin–orbit coupling at non-zero electric fields leads to the formation of A and B excitons in the larger or smaller band gap, with correspondingly larger or smaller binding energies. Our calculations show the coexistence of the semiconducting phase of A excitons with the EI phase of B excitons for a particular range of electric field. The dielectric environment precludes the existence of the EI phase in supported or encapsulated monolayer Xenes.  相似文献   

9.
Temperature-dependent photoluminescence (PL) from two multi-quantum well (MQW) structures with different barrier widths has been systematically investigated. The PL band in the well layers is dominated by localized excitons (LE), D0X, and D0X-1LO. As the temperature increases, luminescence from the excitons localized in the well layers shows an ‘S’-shaped shift in the thin barrier MQW whereas a monotonic redshift is observed from the thick barrier MQW. Quenching of well-related emission is associated with delocalization of the excitons in the potential minima induced by interface fluctuations or alloy disorder. The activation energies correlated with depths of the local potential are deduced to be 7 and 17 meV for the thick and thin barrier MQWs, respectively.  相似文献   

10.
We have studied the exciton effects in armchair graphene nanoribbons systematically, using the nonorthogonal tight-binding model supplement by the long-range Coulomb interactions. It is found from our calculations that the excitation energies, the exciton binding energies and the exciton wave function sizes of the E 11 and E 22 excitons all exhibit oscillation as a function of the ribbon width. And there is a phase shift of π between the oscillation of the E 11 and E 22 excitons.  相似文献   

11.
The Hjalmarson et al. theory of Frenkel core excitons is applied to the Si and Ge p core excitons in SixGe1-x alloys. The Si 2p and Ge 3p Frenkel excitons' “binding energies” with respect to the conduction-band edge are found to be strong functions of x, with nearly zero binding energies for both excitons near x=0 or 1, and with binding energies of order tenths of eV for compositions x near x=0.2.  相似文献   

12.
We report on calculation of binding energies of excitons as well as positively and negatively charged excitons and biexcitons in type-II quantum dots. The shape of the GaSb/GaAs quantum dot is assumed lens-like and the energies are calculated within the Hartree–Fock approximation. A large enhancement of the binding energies has been estimated in comparison with the type-I quantum dots (InAs/GaAs) which is in good agreement with the recent experimental findings.  相似文献   

13.
Wavelength modulated absorption spectra of the free excitons in 6H, 15R and 3C SiC have been measured. The spin-orbit splitting of the valence bands of the uniaxial and cubic polytypes are found to be 7 and 10 meV respectively. Using a new value for the exciton binding energy of 27 meV, an improved value of the fundamental gap of cubic SiC, Eg = 2.417 eV, is derived. Due to the small spin-orbit splitting, the valence bands are highly non-parabolic at low energies.  相似文献   

14.
惠萍 《物理学报》2005,54(9):4324-4328
在有效质量近似(EMA)下,采用B样条技术和变分方法,分别研究较大CdTe球量子点(25—35nm)和较小CdS球量子点(025—35nm)中激子的量子受限效应,计算出CdTe和CdS球量子点中受限激子的基态能和束缚能随参数的变化规律,比较两种计算结果得到:(1)较大量子点中受限激子的基态能和束缚能对量子点边界和量子点外部介质的介电常数不敏感,但较小量子点中受限激子的基态能和束缚能对量子点边界和量子点外部介质的介电常数比较敏感.(2)在较强受限区域,大量子点与小量子点的激子基态能和束缚能的变化规律完全不同.(3)B样条技术对于研究这种具有边界的束缚态系统是很精确的方法,这种方法特别适合用于多层结构量子点系统的精确计算. 关键词: B样条技术 量子受限效应 有效质量近似  相似文献   

15.
The energies of direct and interwell excitons in superlattices based on europium and lead sulfides have been calculated. It is established that these excitons have higher oscillator strengths and binding energies due to the indirect exchange. This circumstance can be used in semiconductor devices operating on exciton transitions.  相似文献   

16.
Summary We show how to compute the eigenvalues of an anisotropic Schroedinger equation for light-and heavy-hole excitons using a simplified deltalike interaction potential. Performing the calculation with a potential appropriate to bulk GaAs crystal, we obtain the excitonic binding energies for the heavy- and light-hole excitons, with the heavy-hole binding energy greater than that for the light hole. Inversion of this order for the case of a quantum well is discussed and expalined  相似文献   

17.
 We calculate the effect of a homogeneous electric field on electrons, holes and excitons confined in a quantum well structure consisting of alternate thin layers of well and barrier material. The electric field which acts perpendicular to the quantum well is taken as a perturbation on the quantum well structure confining the charges. The electron and hole energies in the conduction and valence subbands are calculated by solving a one-dimensional Schr?dinger equation. The exciton binding energy is calculated using an improved excitonic model. Results obtained indicate the importance of higher-order excitons in optical transitions at high electric fields. Received: 29 February 1996/Accepted: 19 August 1996  相似文献   

18.
Nucleons with very small binding energies present in nuclei far from the β stability line produce a unique shell structure, which leads to the disappearance of traditional magic numbers or to the creation of new magic numbers and new deformation regions. We study the shell structure in terms of the variation of two important ingredients, the kinetic energy and the spin-orbit splitting, as a function of the orbital angular momentum ℓ, when binding energies of neutrons decrease towards zero. It is also shown that for low-lying threshold strength, a negative sign is possible for the polarization charge coming from the coupling of one-particle to isoscalar shape oscillations. Received: 1 May 2001 / Accepted: 4 December 2001  相似文献   

19.
武振华  陈蕾  田强 《中国物理 B》2016,25(3):37310-037310
Binding energies of excitons in GaAs films on AlxGa1-xAs substrates are studied theoretically with the fractional-dimensional approach. In this approach, the real anisotropic “exciton+film” semiconductor system is mapped into an effective fractional-dimensional isotropic space. For different aluminum concentrations and substrate thicknesses, the exciton binding energies are obtained as a function of the film thickness. The numerical results show that, for different aluminum concentrations and substrate thicknesses, the exciton binding energies in GaAs films on AlxGa1-xAs substrates all exhibit their maxima with increasing film thickness. It is also shown that the binding energies of heavy-hole and light-hole excitons both have their maxima with increasing film thickness.  相似文献   

20.
Low-temperature photoluminescence of GaAs has been investigated in MBE-grown Al x Ga1–x As-GaAs single heterojunctions subject to an electric field. No peak energy shift is observed in the emission lines due to free excitons and excitons bound to isolated centers when the electric field is applied. In contrast, the excitonic lines arising from the previously described defect-induced bound exciton (DIBX) transitions exhibit a prominent low-energy shift when the electric field is increased. We attribute these lines to excitons bound to acceptor pairs. The excitons bound to distant pairs have smaller binding energies than those bound to closer pairs. They are, therefore, easily dissociated in a weak electric field. The electrons and holes thus dissociated may again be trapped by closer pairs, which results in a low-energy shift of the overall spectrum. The photocurrent measured as a function of the electric field supports Dingle's rule for the valence bandedge discontinuity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号