首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work investigates the unimolecular dissociation of the 2-buten-2-yl radical. This radical has three potentially competing reaction pathways: C-C fission to form CH3 + propyne, C-H fission to form H + 1,2-butadiene, and C-H fission to produce H + 2-butyne. The experiments were designed to probe the branching to the three unimolecular dissociation pathways of the radical and to test theoretical predictions of the relevant dissociation barriers. Our crossed laser-molecular beam studies show that 193 nm photolysis of 2-chloro-2-butene produces 2-buten-2-yl in the initial photolytic step. A minor C-Cl bond fission channel forms electronically excited 2-buten-2-yl radicals and the dominant C-Cl bond fission channel produces ground-state 2-buten-2-yl radicals with a range of internal energies that spans the barriers to dissociation of the radical. Detection of the stable 2-buten-2-yl radicals allows a determination of the translational, and therefore internal, energy that marks the onset of dissociation of the radical. The experimental determination of the lowest-energy dissociation barrier gave 31 +/- 2 kcal/mol, in agreement with the 32.8 +/- 2 kcal/mol barrier to C-C fission at the G3//B3LYP level of theory. Our experiments detected products of all three dissociation channels of unstable 2-buten-2-yl as well as a competing HCl elimination channel in the photolysis of 2-chloro-2-butene. The results allow us to benchmark electronic structure calculations on the unimolecular dissociation reactions of the 2-buten-2-yl radical as well as the CH3 + propyne and H + 1,2-butadiene bimolecular reactions. They also allow us to critique prior experimental work on the H + 1,2-butadiene reaction.  相似文献   

2.
The work presented here uses photofragment translational spectroscopy to investigate the primary and secondary dissociation channels of acryloyl chloride (CH2==CHCOCl) excited at 193 nm. Three primary channels were observed. Two C-Cl fission channels occur, one producing fragments with high kinetic recoil energies and the other producing fragments with low translational energies. These channels produced nascent CH2CHCO radicals with internal energies ranging from 23 to 66 kcal/mol for the high-translational-energy channel and from 50 to 68 kcal/mol for the low-translational-energy channel. We found that all nascent CH2CHCO radicals were unstable to CH2CH + CO formation, in agreement with the G3//B3LYP barrier height of 22.4 kcal/mol to within experimental and computational uncertainties. The third primary channel is HCl elimination. All of the nascent CH2CCO coproducts were found to have enough internal energy to dissociate, producing CH2C: + CO, in qualitative agreement with the G3//B3LYP barrier of 39.5 kcal/mol. We derive from the experimental results an upper limit of 23 +/- 3 kcal/mol for the zero-point-corrected barrier to the unimolecular dissociation of the CH2CHCO radical to form CH2CH + CO.  相似文献   

3.
The work presented here is the first in a series of studies that use a molecular beam scattering technique to investigate the unimolecular reaction dynamics of C(4)H(7) radical isomers. Photodissociation of the halogenated precursor 2-bromo-1-butene at 193 nm under collisionless conditions produced 1-buten-2-yl radicals with a range of internal energies spanning the predicted barriers to the unimolecular reaction channels of the radical. Resolving the velocities of the stable C(4)H(7) radicals, as well as those of the products, allows for the identification of the energetic onset of each dissociation channel. The data show that radicals with at least 30.7 +/- 2 kcal/mol of internal energy underwent C-C fission to form allene + methyl, and radicals with at least 36.7 +/- 4 kcal/mol of internal energy underwent C-H fission to form H + 1-butyne and H + 1,2-butadiene; both of these observed barriers agree well with the G3//B3LYP calculations of Miller. HBr elimination from the parent molecule was observed, producing vibrationally excited 1-butyne and 1,2-butadiene. In the subsequent dissociation of these C(4)H(6) isomers, the major channel was C-C fission to form propargyl + methyl, and there is also evidence of at least one of the possible H + C(4)H(5) channels. A minor C-Br fission channel produces 1-buten-2-yl radicals in an excited electronic state and with low kinetic energy; these radicals exhibit markedly different dissociation dynamics than do the radicals produced in their ground electronic state.  相似文献   

4.
This paper examines the unimolecular dissociation of propargyl (HCCCH2) radicals over a range of internal energies to probe the CH+HCCH and C+C2H3 bimolecular reactions from the radical intermediate to products. The propargyl radical was produced by 157 nm photolysis of propargyl chloride in crossed laser-molecular beam scattering experiments. The H-loss and H2 elimination channels of the nascent propargyl radicals were observed. Detection of stable propargyl radicals gave an experimental determination of 71.5 (+5-10) kcal/mol as the lowest barrier to dissociation of the radical. This barrier is significantly lower than predictions for the lowest barrier to the radical's dissociation and also lower than calculated overall reaction enthalpies. Products from both H2+HCCC and H+C3H2 channels were detected at energies lower than what has been theoretically predicted. An HCl elimination channel and a minor C-H fission channel were also observed in the photolysis of propargyl chloride.  相似文献   

5.
The potential in the vicinity of the stationary points on the surface for the decomposition of ground-state vinoxy and acetyl radicals has been calculated using the RQCISD(T) method extrapolated to the infinite-basis set limit. Rate coefficients for the decomposition pathways of these two radicals were computed using the master equation and variational transition state theory. Agreement between our calculated rate coefficients for H + CH(2)CO <--> CH(3) + CO and experimental data is very good, without the need for empirical adjustments to the ab initio energy barriers. Multireference configuration-interaction calculations indicate two competitive channels for vinoxy decomposition, with the channel leading to H + CH(2)CO being preferred at photodissociation energies. However, at typical combustion conditions, vinoxy decomposes primarily to CO and methyl. In contrast, decomposition of acetyl shows only one decomposition channel, leading to CO and methyl. The implications of a low-lying exit channel for the calculation of theoretical rate coefficients are discussed briefly.  相似文献   

6.
This work investigates the unimolecular dissociation of the methoxycarbonyl, CH(3)OCO, radical. Photolysis of methyl chloroformate at 193 nm produces nascent CH(3)OCO radicals with a distribution of internal energies, determined by the velocities of the momentum-matched Cl atoms, that spans the theoretically predicted barriers to the CH(3)O + CO and CH(3) + CO(2) product channels. Both electronic ground- and excited-state radicals undergo competitive dissociation to both product channels. The experimental product branching to CH(3) + CO(2) from the ground-state radical, about 70%, is orders of magnitude larger than Rice-Ramsperger-Kassel-Marcus (RRKM)-predicted branching, suggesting that previously calculated barriers to the CH(3)OCO --> CH(3) + CO(2) reaction are dramatically in error. Our electronic structure calculations reveal that the cis conformer of the transition state leading to the CH(3) + CO(2) product channel has a much lower barrier than the trans transition state. RRKM calculations using this cis transition state give product branching in agreement with the experimental branching. The data also suggest that our experiments produce a low-lying excited state of the CH(3)OCO radical and give an upper limit to its adiabatic excitation energy of 55 kcal/mol.  相似文献   

7.
The crossed molecular beam scattering technique with soft electron ionization (EI) is used to disentangle the complex dynamics of the polyatomic O(3P) + C2H4 reaction, which is of great relevance in combustion and atmospheric chemistry. Exploiting the newly developed capability of attaining universal product detection by using soft EI, at a collision energy of 54.0 kJ mol(-1), five different primary products have been identified, which correspond to the five exoergic competing channels leading to CH2CHO(vinoxy) + H, CH3CO(acetyl) + H, CH3(methyl) + HCO(formyl), CH2(methylene) + HCHO(formaldehyde), and CH2CO(ketene) + H2. From laboratory product angular and velocity distributions, center-of-mass product angular and translational energy distributions and the relative branching ratios for each channel have been obtained, affording an unprecedented characterization of this important reaction.  相似文献   

8.
We use a combination of crossed laser-molecular beam experiments and velocity map imaging experiments to investigate the primary photofission channels of chloroacetone at 193 nm; we also probe the dissociation dynamics of the nascent CH(3)C(O)CH(2) radicals formed from C-Cl bond fission. In addition to the C-Cl bond fission primary photodissociation channel, the data evidence another photodissociation channel of the precursor, C-C bond fission to produce CH(3)CO and CH(2)Cl. The CH(3)C(O)CH(2) radical formed from C-Cl bond fission is one of the intermediates in the OH + allene reaction en route to CH(3) + ketene. The 193 nm photodissociation laser allows us to produce these CH(3)C(O)CH(2) radicals with enough internal energy to span the dissociation barrier leading to the CH(3) + ketene asymptote. Therefore, some of the vibrationally excited CH(3)C(O)CH(2) radicals undergo subsequent dissociation to CH(3) + ketene products; we are able to measure the velocities of these products using both the imaging and scattering apparatuses. The results rule out the presence of a significant contribution from a C-C bond photofission channel that produces CH(3) and COCH(2)Cl fragments. The CH(3)C(O)CH(2) radicals are formed with a considerable amount of energy partitioned into rotation; we use an impulsive model to explicitly characterize the internal energy distribution. The data are better fit by using the C-Cl bond fission transition state on the S(1) surface of chloroacetone as the geometry at which the impulsive force acts, not the Franck-Condon geometry. Our data suggest that, even under atmospheric conditions, the reaction of OH with allene could produce a small branching to CH(3) + ketene products, rather than solely producing inelastically stabilized adducts. This additional channel offers a different pathway for the OH-initiated oxidation of such unsaturated volatile organic compounds, those containing a C=C=C moiety, than is currently included in atmospheric models.  相似文献   

9.
We investigated the dynamics of isomerization and multi-channel dissociation of propenal (CH(2)CHCHO), methyl ketene (CH(3)CHCO), hydroxyl propadiene (CH(2)CH(2)CHOH), and hydroxyl cyclopropene (cyclic-C(3)H(3)-OH) in the ground potential-energy surface using quantum-chemical calculations. Optimized structures and vibrational frequencies of molecular species were computed with method B3LYP∕6-311G(d,p). Total energies of molecules at optimized structures were computed at the CCSD(T)∕6-311+G(3df,2p) level of theory. We established the potential-energy surface for decomposition to CH(2)CHCO + H, CH(2)CH + HCO, CH(2)CH(2)∕CH(3)CH + CO, CHCH∕CH(2)C + H(2)CO, CHCCHO∕CH(2)CCO + H(2), CHCH + CO + H(2), CH(3) + HCCO, CH(2)CCH + OH, and CH(2)CC∕cyclic-C(3)H(2) + H(2)O. Microcanonical rate coefficients of various reactions of trans-propenal with internal energies 148 and 182 kcal mol(-1) were calculated using Rice-Ramsperger-Kassel-Marcus and Variational transition state theories. Product branching ratios were derivable using numerical integration of kinetic master equations and the steady-state approximation. The concerted three-body dissociation of trans-propenal to fragments C(2)H(2) + CO + H(2) is the prevailing channel in present calculations. In contrast, C(3)H(3)O + H, C(2)H(3) + HCO and C(2)H(4) + CO were identified as major channels in the photolysis of trans-propenal. The discrepancy between calculations and experiments in product branching ratios indicates that the three major photodissociation channels occur mainly on an excited potential-energy surface whereas the other channels occur mainly on the ground potential-energy surface. This work provides profound insight in the mechanisms of isomerization and multichannel dissociation of the system C(3)H(4)O.  相似文献   

10.
This study investigates two features of interest in recent work on the photolytic production of the methoxy carbonyl radical and its subsequent unimolecular dissociation channels. Earlier studies used methyl chloroformate as a photolytic precursor for the CH3OCO, methoxy carbonyl (or methoxy formyl) radical, which is an intermediate in many reactions that are relevant to combustion and atmospheric chemistry. That work evidenced two competing C-Cl bond fission channels, tentatively assigning them as producing ground- and excited-state methoxy carbonyl radicals. In this study, we measure the photofragment angular distributions for each C-Cl bond fission channel and the spin-orbit state of the Cl atoms produced. The data shows bond fission leading to the production of ground-state methoxy carbonyl radicals with a high kinetic energy release and an angular distribution characterized by an anisotropy parameter, beta, of between 0.37 and 0.64. The bond fission that leads to the production of excited-state radicals, with a low kinetic energy release, has an angular distribution best described by a negative anisotropy parameter. The very different angular distributions suggest that two different excited states of methyl chloroformate lead to the formation of ground- and excited-state methoxy carbonyl products. Moreover, with these measurements we were able to refine the product branching fractions to 82% of the C-Cl bond fission resulting in ground-state radicals and 18% resulting in excited-state radicals. The maximum kinetic energy release of 12 kcal/mol measured for the channel producing excited-state radicals suggests that the adiabatic excitation energy of the radical is less than or equal to 55 kcal/mol, which is lower than the 67.8 kcal/mol calculated by UCCSD(T) methods in this study. The low-lying excited states of methylchloroformate are also considered here to understand the observed angular distributions. Finally, the mechanism for the unimolecular dissociation of the methoxy carbonyl radical to CH3 + CO2, which can occur through a transition state with either cis or, with a much higher barrier, trans geometry, was investigated with natural bond orbital computations. The results suggest donation of electron density from the nonbonding C radical orbital to the sigma* orbital of the breaking C-O bond accounts for the additional stability of the cis transition state.  相似文献   

11.
The dissociative photoionization onsets for the formation of the propionyl ion (C(2)H(5)CO(+)) and the acetyl ion (CH(3)CO(+)) were measured from energy selected butanone and 2,3-pentanedione ions using the technique of threshold photoelectron photoion coincidence (TPEPICO) spectroscopy. Ion time-of-flight (TOF) mass spectra recorded as a function of the ion internal energy permitted the construction of breakdown diagrams, which are the fractional abundances of ions as a function of the photon energy. The fitting of these diagrams with the statistical theory of unimolecular decay permitted the extraction of the 0 K dissociation limits of the first and second dissociation channels. This procedure was tested using the known energetics of the higher energy dissociation channel in butanone that produced the acetyl ion and the ethyl radical. By combining the measured dissociative photoionization onsets with the well-established heats of formation of CH(3)(*), CH(3)CO(+), CH(3)CO(*), and butanone, the 298 K heats of formation, Delta(f)H degrees (298K), of the propionyl ion and radical were determined to be 618.6 +/- 1.4 and -31.7 +/- 3.4 kJ/mol, respectively, and Delta(f)H degrees (298K)[2,3-pentanedione] was determined to be -343.7 +/- 2.5 kJ/mol. This is the first experimentally determined value for the heat of formation for 2,3-pentanedione. Ab initio calculations at the Weizmann-1 (W1) level of theory predict Delta(f)H degrees (298K) values for the propionyl ion and radical of 617.9 and -33.3 kJ/mol, respectively, in excellent agreement with the measured values.  相似文献   

12.
The reaction of the methylidyne radical (CH) with acetaldehyde (CH(3)CHO) is studied at room temperature and at a pressure of 4 Torr (533.3 Pa) using a multiplexed photoionization mass spectrometer coupled to the tunable vacuum ultraviolet synchrotron radiation of the Advanced Light Source at Lawrence Berkeley National Laboratory. The CH radicals are generated by 248 nm multiphoton photolysis of CHBr(3) and react with acetaldehyde in an excess of helium and nitrogen gas flow. Five reaction exit channels are observed corresponding to elimination of methylene (CH(2)), elimination of a formyl radical (HCO), elimination of carbon monoxide (CO), elimination of a methyl radical (CH(3)), and elimination of a hydrogen atom. Analysis of the photoionization yields versus photon energy for the reaction of CH and CD radicals with acetaldehyde and CH radical with partially deuterated acetaldehyde (CD(3)CHO) provides fine details about the reaction mechanism. The CH(2) elimination channel is found to preferentially form the acetyl radical by removal of the aldehydic hydrogen. The insertion of the CH radical into a C-H bond of the methyl group of acetaldehyde is likely to lead to a C(3)H(5)O reaction intermediate that can isomerize by β-hydrogen transfer of the aldehydic hydrogen atom and dissociate to form acrolein + H or ketene + CH(3), which are observed directly. Cycloaddition of the radical onto the carbonyl group is likely to lead to the formation of the observed products, methylketene, methyleneoxirane, and acrolein.  相似文献   

13.
The thermal decomposition of peroxy acetyl nitrate (PAN) is investigated by low pressure flash thermolysis of PAN highly diluted in noble gases and subsequent isolation of the products in noble gas matrices at low temperatures and by density functional computations. The IR spectroscopically observed formation of CH3C(O)OO and H2CCO (ketene) besides NO2, CO2, and HOO implies a unimolecular decay pathway for the thermal decomposition of PAN. The major decomposition reaction of PAN is bond fission of the O-N single bond yielding the peroxy radical. The O-O bond fission pathway is a minor route. In the latter case the primary reaction products undergo secondary reactions whose products are spectroscopically identified. No evidence for rearrangement processes as the formation of methyl nitrate is observed. A detailed mapping of the reaction pathways for primary and secondary reactions using quantum chemical calculations is in good agreement with the experiment and predicts homolytic O-N and O-O bond fissions within the PAN molecule as the lowest energetic primary processes. In addition, the first IR spectroscopic characterization of two rotameric forms for the radical CH3C(O)OO is given.  相似文献   

14.
This paper reports a series of electronic structure calculations performed on the dissociation pathways of the vinoxy radical (CH(2)CHO). We use coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)), complete active space self-consistent field (CASSCF), multireference configuration interaction (MRCI), and MRCI with the Davidson correction (MRCI+Q) to calculate the barrier heights of the two unimolecular dissociation pathways of this radical. The effect of state averaging on the barrier heights is investigated at the CASSCF, MRCI, and MRCI+Q levels. The change in mixing angle along the reaction path is calculated as a measure of derivative coupling and found to be insufficient to suggest nonadiabatic recrossing. We also present a new analysis of previous experimental data on the unimolecular dissociation of ground state vinoxy. In particular, an error in the internal energy distribution of vinoxy radicals reported in a previous paper is corrected and a new analysis of the experimental sensitivity to the onset energy (barrier height) for the isomerization reaction is given. Combining these studies, a final "worst case" analysis of the product branching ratio is given and a statistical model using each of the calculated transition states is found to be unable to correctly reproduce the experimental data.  相似文献   

15.
This work determines the dissociation barrier height for CH2CHCO --> CH2CH + CO using two-dimensional product velocity map imaging. The CH2CHCO radical is prepared under collision-free conditions from C-Cl bond fission in the photodissociation of acryloyl chloride at 235 nm. The nascent CH2CHCO radicals that do not dissociate to CH2CH + CO, about 73% of all the radicals produced, are detected using 157-nm photoionization. The Cl(2P(3/2)) and Cl(2P(1/2)) atomic fragments, momentum matched to both the stable and unstable radicals, are detected state selectively by resonance-enhanced multiphoton ionization at 235 nm. By comparing the total translational energy release distribution P(E(T)) derived from the measured recoil velocities of the Cl atoms with that derived from the momentum-matched radical cophotofragments which do not dissociate, the energy threshold at which the CH2CHCO radicals begin to dissociate is determined. Based on this energy threshold and conservation of energy, and using calculated C-Cl bond energies for the precursor to produce CH2CHC*O or C*H2CHCO, respectively, we have determined the forward dissociation barriers for the radical to dissociate to vinyl + CO. The experimentally determined barrier for CH2CHC*O --> CH2CH + CO is 21+/-2 kcal mol(-1), and the computed energy difference between the CH2CHC*O and the C*H2CHCO forms of the radical gives the corresponding barrier for C*H2CHCO --> CH2CH + CO to be 23+/-2 kcal mol(-1). This experimental determination is compared with predictions from electronic structure methods, including coupled-cluster, density-functional, and composite Gaussian-3-based methods. The comparison shows that density-functional theory predicts too low an energy for the C*H2CHCO radical, and thus too high a barrier energy, whereas both the Gaussian-3 and the coupled-cluster methods yield predictions in good agreement with experiment. The experiment also shows that acryloyl chloride can be used as a photolytic precursor at 235 nm of thermodynamically stable CH2CHC*O radicals, most with an internal energy distribution ranging from approximately 3 to approximately 21 kcal mol(-1). We discuss the results with respect to the prior work on the O(3P) + propargyl reaction and the analogous O(3P) + allyl system.  相似文献   

16.
The resonantly stabilized radical i-C(4)H(5) (CH(2)CCHCH(2)) is an important intermediate in the combustion of unsaturated hydrocarbons and is thought to be involved in the formation of polycyclic aromatic hydrocarbons through its reaction with acetylene (C(2)H(2)) to form benzene + H. This study uses quantum chemistry and statistical reaction rate theory to investigate the mechanism and kinetics of the i-C(4)H(5) + O(2) reaction as a function of temperature and pressure, and unlike most resonantly stabilized radicals we show that i-C(4)H(5) is consumed relatively rapidly by its reaction with molecular oxygen. O(2) addition occurs at the vinylic and allenic radical sites in i-C(4)H(5), with respective barriers of 0.9 and 4.9 kcal mol(-1). Addition to the allenic radical form produces an allenemethylperoxy radical adduct with only around 20 kcal mol(-1) excess vibrational energy. This adduct can isomerize to the ca. 14 kcal mol(-1) more stable 1,3-divinyl-2-peroxy radical via concerted and stepwise processes, both steps with barriers around 10 kcal mol(-1) below the entrance channel energy. Addition of O(2) to the vinylic radical site in i-C(4)H(5) directly forms the 1,3-divinyl-2-peroxy radical with a small barrier and around 36.8 kcal mol(-1) of excess energy. The 1,3-divinyl-2-peroxy radical isomerizes via ipso addition of the O(2) moiety followed by O atom insertion into the adjacent C-C bond. This process forms an unstable intermediate that ultimately dissociates to give the vinyl radical, formaldehyde, and CO. At higher temperatures formation of vinylacetylene + HO(2), the vinoxyl radical + ketene, and the 1,3-divinyl-2-oxyl radical + O paths have some importance. Because of the adiabatic transition states for O(2) addition, and significant reverse dissociation channels in the peroxy radical adducts, the i-C(4)H(5) + O(2) reaction proceeds to new products with rate constant of around 10(11) cm(3) mol(-1) s(-1) at typical combustion temperatures (1000-2000 K). For fuel-rich flames we show that the reaction of i-C(4)H(5) with O(2) is likely to be faster than that with C(2)H(2), bringing into question the importance of the i-C(4)H(5) + C(2)H(2) reaction in initiating ring formation in sooting flames.  相似文献   

17.
We observed fifteen photofragments upon photolysis of propenal (acrolein, CH(2)CHCHO) at 193 nm using photofragment translational spectroscopy and selective vacuum-ultraviolet (VUV) photoionization. All the photoproducts arise from nine primary and two secondary dissociation pathways. We measured distributions of kinetic energy of products and determined branching ratios of dissociation channels. Dissociation to CH(2)CHCO + H and CH(2)CH + HCO are two major primary channels with equivalent branching ratios of 33%. The CH(2)CHCO fragment spontaneously decomposes to CH(2)CH + CO. A proportion of primary products CH(2)CH from the fission of bond C-C of propenal further decompose to CHCH + H but secondary dissociation HCO → H + CO is negligibly small. Binary dissociation to CH(2)CH(2) (or CH(3)CH) + CO and concerted three-body dissociation to C(2)H(2) + CO + H(2) have equivalent branching ratios of 14%-15%. The other channels have individual branching ratios of ~1%. The production of HCCO + CH(3) indicates the formation of intermediate methyl ketene (CH(3)CHCO) and the production of CH(2)CCH + OH and CH(2)CC + H(2)O indicate the formation of intermediate hydroxyl propadiene (CH(2)CCHOH) from isomerization of propenal. Distributions of kinetic energy release and dissociation mechanisms are discussed. This work provides a complete look and profound insight into the multi-channel dissociation mechanisms of propenal. The combination of a molecular beam apparatus and synchrotron VUV ionization allowed us to untangle the complex mechanisms of nine primary and two secondary dissociation channels.  相似文献   

18.
These velocity map imaging experiments characterize the photolytic generation of one of the two radical intermediates formed when OH reacts via an addition mechanism with allene. The CH2CCH2OH radical intermediate is generated photolytically from the photodissociation of 2-chloro-2-propen-1-ol at 193 nm. Detecting the Cl atoms using [2+1] resonance-enhanced multiphoton ionization evidences an isotropic angular distribution for the Cl+CH2CCH2OH photofragments, a spin-orbit branching ratio for Cl(2P1/2):Cl(2P3/2) of 0.28, and a bimodal recoil kinetic energy distribution. Conservation of momentum and energy allows us to determine from this data the internal energy distribution of the nascent CH2CCH2OH radical cofragment. To assess the possible subsequent decomposition pathways of this highly vibrationally excited radical intermediate, we include electronic structure calculations at the G3//B3LYP level of theory. They predict the isomerization and dissociation transition states en route from the initial CH2CCH2OH radical intermediate to the three most important product channels for the OH+allene reaction expected from this radical intermediate: formaldehyde+C2H3, H+acrolein, and ethene+CHO. We also calculate the intermediates and transition states en route from the other radical adduct, formed by addition of the OH to the center carbon of allene, to the ketene+CH3 product channel. We compare our results to a previous theoretical study of the O+allyl reaction conducted at the CBS-QB3 level of theory, as the two reactions include several common intermediates.  相似文献   

19.
The mechanisms and kinetics of unimolecular decomposition of succinic acid and its anhydride have been studied at the G2M(CC2) and microcanonical RRKM levels of theory. It was shown that the ZsgsZ conformer of succinic acid, with the Z-acid form and the gauche conformation around the central C-C bond, is its most stable conformer, whereas the lowest energy conformer with the E-acid form, ECGsZ, is only 3.1 kcal/mol higher in energy than the ZsgsZ. Three primary decomposition channels of succinic acid producing H2O + succinic anhydride with a barrier of 51.0 kcal/mol, H2O + OCC2H3COOH with a barrier of 75.7 kcal/mol and CO2 + C2H5COOH with a barrier of 71.9 kcal/mol were predicted. The dehydration process starting from the ECGCZ-conformer is found to be dominant, whereas the decarboxylation reaction starting from the ZsgsZ-conformer is only slightly less favorable. It was shown that the decomposition of succinic anhydride occurs via a concerted fragmentation mechanism (with a 69.6 kcal/mol barrier), leading to formation of CO + CO2 + C2H4 products. On the basis of the calculated potential energy surfaces of these reactions, the rate constants for unimolecular decomposition of succinic acid and its anhydride were predicted. In addition, the predicted rate constants for the unimolecular decomposition of C2H5COOH by decarboxylation (giving C2H6 + CO2) and dehydration (giving H3CCHCO + H2O) are in good agreement with available experimental data.  相似文献   

20.
The vinoxy radical, a common intermediate in gas-phase alkene ozonolysis, reacts with O2 to form a chemically activated alpha-oxoperoxy species. We report CBS-QB3 energetics for O2 addition to the parent (*CH2CHO, 1a), 1-methylvinoxy (*CH2COCH3, 1b), and 2-methylvinoxy (CH3*CHCHO, 1c) radicals. CBS-QB3 predictions for peroxy radical formation agree with experimental data, while the G2 method systematically overestimates peroxy radical stability. RRKM/master equation simulations based on CBS-QB3 data are used to estimate the competition between prompt isomerization and thermalization for the peroxy radicals derived from 1a, 1b, and 1c. The lowest energy isomerization pathway for radicals 4a and 4c (derived from 1a and 1c, respectively) is a 1,4-shift of the acyl hydrogen requiring 19-20 kcal/mol. The resulting hydroperoxyacyl radical decomposes quantitatively to form *OH. The lowest energy isomerization pathway for radical 4b (derived from 1b) is a 1,5-shift of a methyl hydrogen requiring 26 kcal/mol. About 25% of 4a, but only approximately 5% of 4c, isomerizes promptly at 1 atm pressure. Isomerization of 4b is negligible at all pressures studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号