首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the development of an infrared laser spectrometer using commercial diode laser emitting at 2.68 μm. The instrument is designed to measure CO2 concentrations above a glass poured with a sparkling liquid, such as beer or champagne in the present case. This spectrometer was developed in order to realize the cartography of CO2 outgassing in the headspace above various glasses. We provide details of the instrument design and data processing. Absorption lines were carefully selected to minimize interferences from neighboring water vapor transitions. The instrument performance allows to measure ambient CO2 concentrations so that one can be very confident in the CO2 concentrations measurements above the glass. Some preliminary results on sparkling liquids such as beer and champagne are presented and compared to a model describing the flux of CO2 discharging from glasses due to the contribution of bubbles.  相似文献   

2.
A flexible and portable trace nitrogen dioxide sensor based on cavity ringdown spectroscopy using an optical fiber-coupled high-finesse cavity was successfully demonstrated. Tailoring the spatial mode matching condition of the core of an optical fiber and high-finesse external cavity allows for effective optical feedback into an antireflection-coated laser diode for stable resonant enhancement of the external cavity. The external cavity, which works as a ringdown cavity, could be remotely located from the light source and receiver section by only a single mode optical fiber. The sensitivity was found to be 1.0×10−7 cm−1 in a compact 1-cm3 ringdown cavity volume.  相似文献   

3.
A broad spectral surface enhanced Raman scattering sensor is developed using the solid core holey photonic crystal fiber with silver nanoparticles cluster. This SERS probe offers an operational excitation wavelength range overlaying visible light and near infrared light. The PCF SERS sensing is demonstrated in the detection of the 4-Mercaptobenzoic acid (10−6 M) solution with 514.5 and 785 nm excitation. In this structure of PCF sensor, the related analysis shows that leakage modes also make an important contribution in the SERS activity not only by the evanescent field way.  相似文献   

4.
A modal solution approach based on the powerful, finite element method (FEM) using a full-vectorial H-field formulation has been used to determine the single-mode operation of a photonic crystal fiber (PCF). The modal solution of the fundamental space-filling mode has also been obtained to identify the cutoff conditions of the waveguide modes. The FEM, with the perfectly matched layer boundary condition, has been developed and employed to characterize the leakage loss and the differential loss between the polarized modes of a PCF. The design approach for a single-polarization and single-mode PCF has also been discussed.  相似文献   

5.
We propose a novel and simple scheme for a temperature-insensitive strain measurement by using a birefringent interferometer configured by a polarization-maintaining photonic crystal fiber (PM-PCF). The wavelength-dependent periodic transmission in a birefringent interferometer can be achieved by using a PM-PCF between two linear polarizers. Since the PM-PCF is composed of a single material, such as silica, the peak wavelength shift with temperature variation can be negligible because of the small amount of the birefringence change of the PM-PCF with temperature change. The measured temperature sensitivity is −0.3 pm/°C. However, the peak wavelength can be changed by strain because the peak wavelength shift is directly proportion to strain change. The strain sensitivity is measured to be 1.3 pm/με in a strain range from 0 to 1600 με. The measurement resolution of the strain is estimated to be 2.1 με. The proposed scheme has advantages of simple structure and low loss without a Sagnac loop, temperature insensitivity, ease installation, and short length of a sensing probe compared with a conventional PMF-based Sagnac loop interferometer.  相似文献   

6.
We designed, fabricated, and characterized birefringent holey fibers with zero polarimetric sensitivity to temperature. The sensitivity measurements were carried out in a wide spectral range of 0.68–1.55 μm in fibers with different hole and pitch values and with birefringence induced by a pair of large holes adjacent to the core. Our results show that zero sensitivity to temperature can be obtained at certain wavelengths for the bare fibers with properly adjusted geometrical parameters. Moreover, the spectral measurements of the sensitivity to temperature are in good agreement with the modeling results for all the investigated fibers.  相似文献   

7.
We present a Q-switched microchip laser emitting 1064-nm pulses as short as 100 ps synchronized to a cavity dumped femtosecond laser emitting 800-nm pulses as short as 80 fs. The synchronization is achieved by presaturating the saturable absorber of the microchip laser with femtosecond pulses even though both lasers emit at widely separated wavelengths. The mean timing jitter is 40 ps and thus considerably shorter than the pulse duration of the microchip laser.  相似文献   

8.
The influence of Zn-atom additive on ‘pure’ copper vapor laser output characteristics is studied. The laser pulse width, energy and power are found to increase under the diffusion of zinc atoms from a zinc-containing reservoir into the discharge of the copper-vapor laser at temperatures above 500°C. Additional absorption experiments and calculations are consistent with the conclusion that not only optical resonant pumping by the 213.9-nm Zn I line, but also other processes, should be taken into account to explain the effects of additive influence.  相似文献   

9.
Summary  An anharmonically coupled local mode model is used to study highly excited stretching vibrational spectra and intensities of infrared transition in a tetrahedral molecule. This model is successfully applied to silane and silicon tetrafluoride. The author is very grateful to Prof. Zhong-Qi Ma for his continuing interest, support and sound advice. This work was supported by the National Natural Science Foundation of China and Grant No. LWTZ-1298 of the Chinese Academy of Sciences.  相似文献   

10.
We report on a high-power 888-nm-pumped continuous-wave Nd:YVO4 laser at 1342 nm. An output power of 24 W emitted into a diffraction limited beam with an M 2 parameter better than <1.1 is demonstrated. At an absorbed pump power of 84 W the optical conversion efficiency is 29%.  相似文献   

11.
In this paper, using a direct double-pass and a novel isolator-assisted double-pass waveguide-based Mach-Zehnder interferometer (MZI), high-performance SOA-based multiwavelength fiber lasers (MFL) are proposed and demonstrated experimentally. The filtering characteristics of the proposed isolator-assisted double-pass MZI are analyzed and examined theoretically in comparison with those of the single-pass and direct double-pass MZI. Using a direct double-pass waveguide-based MZI with the single-pass free spectral range (FSR) of 43 GHz, up to 115- and 104-channel simultaneous oscillations spaced at 21.5 GHz in the L-band and C-band are obtained, respectively, with a power non-uniformity of less than 3 dB and an extinction ratio of ∼30 dB. To the best of our knowledge, it is the highest lasing-channel count that has been achieved from an SOA-based MFL. To enhance the extinction ratio while maintaining the FSR, the proposed isolator-assisted double-pass MZI is then utilized in the laser cavity, and a stable 55-wavelength simultaneous oscillation spaced at 43 GHz is accordingly achieved in C-band with an extinction ratio of higher than 50 dB. Compared with the lasing linewidth of 0.058 nm with the conventional single-pass MZI, narrower linewidths of 0.038 and 0.028 nm are obtained with the isolator-assisted and direct double-pass MZI configurations, respectively. The lasers are stable with a maximum power fluctuation per channel of less than 0.8 dB during an hour’s test.  相似文献   

12.
Numerical simulations are used to study how fiber supercontinuum generation seeded by picosecond pulses can be actively controlled through the use of input pulse modulation. By carrying out multiple simulations in the presence of noise, we show how tailored supercontinuum spectra with increased bandwidth and improved stability can be generated using an input envelope modulation of appropriate frequency and depth. The results are discussed in terms of the nonlinear propagation dynamics and pump depletion.  相似文献   

13.
First results on a diode-pumped Er3+:YAG solid-state heat-capacity laser (SSHCL) are reported. The laser achieves an output power of >70 W and could be operated for >2 s, currently limited by the available pump power with respect to the temperature dependent threshold. The experimental results are in good agreement with the spectroscopically expected performance, predicting high-power kW-class operability of an Er3+:YAG SSHCL. The presented work is believed to be the first Er3+:YAG SSHCL investigated.  相似文献   

14.
The carrier-envelope offset frequency of a laser oscillator is determined from the visibility of spectrally resolved fringes in a combined two-path multiple-path interferometer. At maximum visibility the pulses have zero carrier-envelope phase drift, while the visibility becomes zero for uncorrelated pulses. The method is widely independent of bandwidth and pulse energy. The effects of carrier-envelope offset phase noise, finite detection time, and dispersion are also discussed. M. G?rbe and C. Grebing have equally contributed to this paper.  相似文献   

15.
We report the first successful modelocking of a vertical external cavity surface emitting laser (VECSEL) with a quantum dot (QD) gain region. The VECSEL has a total of 35 QD-layers with an emission wavelength of about 1060 nm. In SESAM modelocked operation, we obtain an average output power of 27.4 mW with 18-ps pulses at a repetition rate of 2.57 GHz. This QD-VECSEL is used as-grown on a 450 μm thick substrate, which limits the average output power.  相似文献   

16.
InSe:Ho single crystal was grown by Bridgman-Stockberger method. Electric field effects on the absorption measurements have been investigated as a function of temperature in InSe:Ho single crystal. The absorption edge shifted towards longer wavelengths and a decrease of intensity in absorption spectra occurred under an electric field of 7.5 kV/cm. Using absorption measurements, steepness parameter and Urbach energy were calculated under electric field. Applied electric field caused an increase in the Urbach energy. At 10 K and 320 K, the first exciton energies were calculated as 1.322 and 1.301 eV for zero voltage and 1.245 and 1.232 eV for applied electric field, respectively.  相似文献   

17.
A master oscillator power amplifier (MOPA) system in which the output from an end-pumped Nd:YAG oscillator cavity dumped at 500 kHz is scaled up by a four-stage Nd:YVO4 amplifier is reported. Decrease in extraction efficiency of the amplifier chain with crystals different from that in the oscillator was analyzed. With the 5.4 W seed output, 118 W of power was extracted from the amplifier chain at the pump power of 345 W, with an extraction efficiency of 34.2% and an overall optical–optical efficiency of 30.9% for the MOPA system. The beam quality factors were measured as M x 2=1.45 and M y 2=1.59 in two orthogonal directions, respectively.  相似文献   

18.
We demonstrated a diode-pumped passively mode-locked c-cut Nd:LuVO4 picosecond laser with a semiconductor saturable-absorber mirror (SESAM) at a wavelength of 1067.8 nm. Due to the wide bandwidth of 0.48 nm, stable mode-locking has been generated with a duration as short as 3.7 ps, which is shorter than for the a-cut Nd:LuVO4 laser. A maximum output power of 1.67 W was achieved to give a highest peak power of 3.47 KW at 18 W absorbed pump power.  相似文献   

19.
The algorithm for recognition of Cherenkov radiation rings based on the Hough Transform Method (HTM), as well as the innovations which allow one to considerably speed up the HTM algorithm, are described. An ellipse-fitting algorithm has been elaborated, because most of the CBM RICH rings have elliptic shapes; moreover, it helps improve the ring-track matching and electron identification procedures. An elaborated procedure of the radius correction is also presented. A detailed study of the procedure of fake ring elimination by artificial neural networks is given. The results of the primary electron identification are presented. All developed algorithms were tested on large statistics of simulated events and are included into the CBM software framework for common use.  相似文献   

20.
We report on a new physical aspect of random lasing, an extremely selective modal oscillation by using a two-dimensional calculation model. The developed model consists of two theoretical subsystems, two-dimensional scattering model for describing multiple scattering process and rate equation model for describing lasing process. Using this model, we show how emission spectrum behaves as the scattering state of photons inside the system changes. It is shown that specific and strong modal oscillation takes place in a closed loop path of emitted photons, efficiently supported by the background multiple scattering. With the increase of multiple scattering events around the closed loop path, the system starts to oscillate with an extremely strong mode without any ASE (amplified spontaneous emission) noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号